
The Integration of Web

Technologies and Robotics: from

Robot Application Development

to Social Ability

Le Kang

Supervisor

Dr. Benjamin Johnston

Supervisor

Prof. Mary-Anne Williams

A dissertation submitted on 14 November 2016 in fulfilment of the requirements

for the degree of

Bachelor of Science (Honours) in Information Technology

Declaration

I, Le Kang, declare that this thesis titled, ‘The Integration of Web Technologies

and Robotics: from Robot Application Development to Social Ability ’ and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Le Kang 10796720 1

Acknowledgement

Foremost, I express my sincere gratitude to my supervisors Dr. Benjamin Johnston

and Prof. Mary-Anne Williams for the continuous support of my honours study

and research, and for their patience, engagement, and immense knowledge. They

also offer me an opportunity to get involved into an amazing social robotics project

which fosters my research topic and expands my vision in the field. I could not

have imagined having better mentors for my honours study.

Besides my supervisors, I would like to thank:

• Paul Fuller, Xun Wang and Meg Tonkin, for their supervision and guidance

during the ATN social robotics project.

• My ATN project teammates Denis Draca, Navi Gunaratne and Jose Gu-

nawarman, for contributing their effort to carry out a successful project.

• Magic lab team, for providing friendly research environment and giving me

support, feedbacks and ideas.

Last but not the least, I would like to thank my beloved family and friends,

who have been there for me throughout the entire process, keeping me motivated

and offering me advices when I am in difficulties. A special thank you goes to my

wife and my daughter, for their constant love and faith in me.

Le Kang 10796720 2

Abstract

This dissertation explores the possibility of combining web technologies with robotics

to address the current accessibility and usability issues in communicating with

robots. Through applications and interfaces developed using web technologies, robots

can be accessed by users more freely and conveniently on different devices. More

importantly, robots can be exposed to a broader user base as the applications and

interfaces are designed to be understood and implemented by people without pro-

gramming or engineering background. As a result, the users can focus on achieving

their various goals with robots, rather than the complicated coding work during the

development stage. Only through this way can robots participate more in people’s

daily life.

The first project in this dissertation presents the development and implementa-

tion of a web application for the control and configuration of the motions of a PR2

robot. The application is based on MEAN stack architecture and developed with

JavaScript and HTML. A user case is presented where the PR2 robot is trained

to catch a thrown ball, under human partner’s command sent through via the ap-

plication. This project illustrates the utilisation of web tools in robot application

development which enables web developers to get involved in robot technologies.

The project also provides a paradigm for implementing web development frame-

work into robot application development.

The second project focus on improving the human-robot interaction with more

user-friendly interfaces. The project involves the REEM robot to conduct promo-

tion activities in a shopping centre. The developed web interface can be used by

shop owners to design and book an activity, as well as by customers to enter the

promotion activity and provide feedbacks. Various web technologies are adopted,

Le Kang 10796720 3

namely node.js, angular.js, robot web tools, cloud communications services etc.

The implementation of web technologies increases the means of the social robot to

communicate with its stakeholders, while enabling the stakeholders to fully utilise

the robot without being exposed to the development of the interface. This project

presents a web-based solution of implementing a social robot.

The dissertation also suggests future work that can be conducted in this area,

such as generalising the web application or interface for implementation for various

purposes. In particular, those applications and interfaces can be provided as online

services to be subscribed by users in different areas. However, exploring these

possibilities is beyond the dissertation’s scope.

Le Kang 10796720 4

Contents

1 Motivation and Introduction 10

2 Literature Review 13

2.1 Web 2.0 and Beyond: Technologies, Trend and Impact 14

2.1.1 Overview . 14

2.1.2 The Cutting-edge Web Development Technologies and Trends 16

2.1.2.1 The Rise of JavaScript 16

2.1.2.2 Representational State Transfer (REST) Web APIs 18

2.1.2.3 Web of Things (WoT) 20

2.1.3 The Future of Web and Its Possible Impacts on Robotics . . 21

2.2 Robot Web Tools: State of the Art 22

2.2.1 Rationale . 22

2.2.2 Under the Hood . 23

2.2.3 Tools and Applications . 24

2.3 Current Applications of Web Technologies for Robotics 25

2.3.1 Robotics Education and Training 25

2.3.2 Programming by Demonstrations 26

2.3.3 Knowledge-based Cloud Robotics 27

2.4 Conclusion . 27

Le Kang 10796720 5

CONTENTS

3 Research Design 29

3.1 Identify Research Questions . 29

3.2 Tools Analysis . 31

3.3 Development Environment and Tools Setup 34

3.4 Research Projects Overview . 35

4 Web Motion Control for PR2 37

4.1 Software Infrastructure . 37

4.1.1 Structure: client-side . 38

4.1.2 Structure: server-side . 39

4.2 User Interface . 41

4.2.1 3D Robot Model Visualisation 41

4.2.2 Joint Control Panel . 42

4.2.3 Robot Vision Live Stream 43

4.3 Use Case: Recording Demonstrations for PR2 Learning Ball Catching 43

4.3.1 Design . 44

4.3.2 Procedure . 46

4.4 Known Limitations . 48

4.5 Discussion . 49

5 “Chip” in Shopping Centre 50

5.1 System Design . 51

5.1.1 Overview of the Subsystems 51

5.1.2 API Framework . 53

5.1.3 Authentication and Authorisation 55

5.2 The Complete Workflow . 57

Le Kang 10796720 6

CONTENTS

5.3 Interaction Between Users and Chip 59

5.4 Discussion and Future Work . 61

6 Conclusion and Future Perspectives 64

A Development Environment Setup 73

B List of Source Codes 74

B.1 Client Side Routers Configuration in Web Motion Control Application 74

B.2 Script for controlling PR2 arms as a whole 76

B.3 Web Server Script in Web Motion Control Application 78

B.4 Visualisation of URDF Using ros3djs 79

B.5 Initialisation of Joint Control Panel 80

B.6 Script for Ball Detecting and Tracing Using OpenCV 82

B.7 Example of Using Remote Method in Loopback 83

B.8 Example of Defining Model Relationships in Loopback 84

B.9 Example of Controlling the Data Access in Loopback 86

Le Kang 10796720 7

List of Figures

2.1 The evolution of the Web . 14

2.2 Most popular technologies in the 2016 StackOverflow’s annual de-

veloper survey . 18

2.3 HTTP request format . 19

2.4 Web of Things . 20

2.5 Workflow of an application using robot web tools 23

3.1 Illustration of the MEAN stack . 33

3.2 Robots used in this research . 35

4.1 Overview of the infrastructure of web motion control 38

4.2 User interface of web motion control 41

4.3 User interfaces for monitor and controller 44

4.4 High-level infrastructure for the use case 45

4.5 Motions for ball catching . 46

4.6 Data collection for a ball catch trial 47

4.7 Data feedback of a ball catch trial 48

5.1 UI of Chip for Hire . 52

5.2 Loopback API explorer . 53

Le Kang 10796720 8

LIST OF FIGURES

5.3 Loopback models structure . 54

5.4 Authentication strategy for Chip to acquire activity content 56

5.5 Workflow of entire system . 57

5.6 Entity relationship diagram of Chip for Hire 58

5.7 UI from Chip for Hire for shopkeeper to view an acitivty 59

5.8 Application UI during a promotion activity 60

5.9 Email and SMS notification from Chip 61

Le Kang 10796720 9

Chapter 1

Motivation and Introduction

Robotics have greatly changed human life in various aspects, from modern warfare,

hazard works and outer-space study to more traditional industries such as health

care and education. As robots are becoming increasingly smart and adaptive, they

are expected to be found not only in factories and laboratories but also in more

daily-life environments like households and public places.

However, there are still problems to be solved for robots to be more common-

place. Typical problems include poor accessibility and usability. In terms of poor

accessibility, robot application development is still limited to the domain of the

experts or specialists who have considerable knowledge of robot operating system

(ROS). In order to expand robotic applications on various platforms and devices,

it is necessary to remove the limitation and make robotics accessible to a broader

and more general groups of researchers and developers. As for the usability issue,

which refers to the effectiveness and efficiency of the interaction between humans

and robots, another challenge presents. When presented to novice users or the

general public, the research question is how to improve the social ability of robots

to minimise the social stress and difficulties, while making sure that all the com-

munication tasks can be completed satisfactorily.

As one possible way to address the above two issues, the combination of web

technologies and robotics has attracted increasing interests. The past two decades

witnessed a significant development in web technologies, especially after entering

Web 2.0 era, when massive user participation is allowed and a large number of

Le Kang 10796720 10

CHAPTER 1. MOTIVATION AND INTRODUCTION

web service based applications have been widely used. These applications become

very commonplace in people’s daily life and provide an adequate potential user

base for robotics applications.

In addition, the threshold for web application development is decreasing for

developers, as the basic client-side technologies such as HTML and JavaScript are

easy to get started with. Following this trend, it is suggested that this web-based

solution can be used to address the aforementioned issues in robotics. The growing

community of web developers in robot-related development is essential to produce

applications and interfaces that will help the large user base to access robots freely,

conveniently and comfortably.

This dissertation explores how the web technologies extend the impact of

robotics from two aspects: robot application development and social ability. The

thesis is that, integrated with web technologies, robotics will have a larger developer-

based community from the web-based robot application development, and conse-

quently, a user-friendly, cross-platform and interactive environment will be created

for robot and human social activities.

The key contribution of this research is exploiting the use of web technolo-

gies in the robot-related application or interface development so that robotics are

more pervasive to both web application developers and normal users. Although

there are some well-developed robot web tools, the utilisation of modern web de-

velopment framework into robot application has not yet attracted much attention.

The projects focus on the seamless integration of web and robot application de-

velopment to expose robotics to web developers who are non-experts as well as

normal people who are not familiar with interacting with robot. The benefit of

this research are threefold:

1. Help web developers get involved with robot application development with web

tools

2. Provide a paradigm for implementing web development framework into robot

application development

3. Facilitate human-robot interaction with more user-friendly interface for so-

cial robots to provide a wider range of social services

Le Kang 10796720 11

CHAPTER 1. MOTIVATION AND INTRODUCTION

The first project in this dissertation develops a web application for the purpose

of controlling and communicating with robot. The users of the application and

robot can use a simple device such as a smart phone to send command to the robot,

even when the user does not have physical access to the robot. The significance

of the application lies in the fact that the application is easy to use and can be

generalised further to accommodate different needs.

In addition, in the first project a use case is provided as an example of im-

plementing such an application. In the use case, the PR2 robot is trained with

ball catching skills, while controlled by the human partner through a developed

application on a smartphone. By receiving commands from the human partner,

the robot learns the best time to perform the grip gesture, according to the ball

position and speed captured by its sensor.

The second project in this dissertation introduces the implementation of a social

robot in a shopping centre to interact with customers in promotion activities. The

project focuses on the communication between the robot and the shop owner, who

can design a promotion activity in a simple way, book a time for the robot to

conduct the activity, and receive the feedback after the activity is completed. The

process is easier by using web technologies, and the communication among the

stakeholders of the robot is greatly simplified.

The dissertation is organised as follows: Chapter 2 discusses the current lit-

erature on robot and robot web technologies, Chapter 3 introduces the research

question of the dissertation and gives an overview of the research projects, Chapter

4 presents the first research project, and the second research project is described

in Chapter 5. Finally, Chapter 6 concludes the paper with future prospectives.

Le Kang 10796720 12

Chapter 2

Literature Review

This chapter gives a summary of relevant web technologies in robotics, including

their historical development, current applications and future trend. These web

technologies help professionals to control and communicate with robots in a more

convenient and easier way. Compared to native applications, they offer much

more flexibility, are more adaptable across various devices and platforms, thus

more efficient and effective for the users.

The focus of this chapter is on the impact of these web technologies on the

future development of robotics, in particular how they can help expand the user

community so that the robotics are more accessible to those without professional

training or expertise. Only through this way can the robotics be applied to more

and more industries and increasingly become common in daily life.

The chapter is organised as follows: section 2.1 focuses on the Web 2.0, includ-

ing the technology itself, its trend and impact. Section 2.2 introduces the popular

robot web tools. Section 2.3 discusses the current applications of web technologies

for robotics including education and training, programming by demonstrations and

knowledge-based cloud robotics. Section 2.4 concludes this chapter.

Le Kang 10796720 13

CHAPTER 2. LITERATURE REVIEW

2.1 Web 2.0 and Beyond: Technologies, Trend

and Impact

2.1.1 Overview

World-Wide Web (W3) emerged as “a pool of human knowledge” [3] in early 1990s

and undoubtably has become one of the most important inventions in the 20th

century. It creates a global information medium for people to share ideas through

computers and mobile devices that connected with internet. Since the beginning of

the web, it has influenced almost every aspect of human activities and continuously

evolved along multiple directions. Nowadays, it is hard to imagine a world without

web technologies.

Figure 2.1: The evolution of the Web [35]

Web X.0 refers to the Xth phase in the evolution of the web. Murugesan

[35] set the ongoing Web’s evolution into 4 stages (Figure 2.1): Web 1.0, which is

information-centric and read-only; Web 2.0, which is people-centric and read-write;

Web 3.0, which is machine-centric and semantic; and Web 4.0, which is agent-

centric and intelligent. He also described the movement of Web to be “aimed at

harnessing the potential of the Web in a more interactive and collaborative manner

with an emphasis on social interaction”.

Web 1.0, the first generation of web, was in a one-way communication manner

(read-only from sever). Nevertheless, emerged in this phase were some dynamic

Le Kang 10796720 14

CHAPTER 2. LITERATURE REVIEW

features such as CMS (Content Management System) like WordPress, and com-

mercialised sites like Amazon, eBay [29]. To some extent, these features and

products accelerated the evolution of the Web in its second stage.

Today Web 2.0 has become a mainstream web technology. It was first intro-

duced by Darcy DiNucci [11] in 1999. He pictured the web as beyond “screenfuls of

text and graphics” and could work across multiple devices such as TV set, car dash-

board or even microwave oven. The term was then popularised by Tim O’Reilly

at the first Web 2.0 conference in 2004. He defined the web as a platform where

the users could control their own data and should be trusted as co-developers [37].

The key word of the Web 2.0 is “social” which embodies both usage and devel-

opment aspects. It not only provides rich and responsive user interface for sharing

information, but also facilitates collaborative content creation and modification

[34]. As a social revolution in the use of web technologies, Web 2.0 let users ac-

tively contribute contents online rather than just passively view web pages created

by a small group of developers [28]. In addition, with spin-off technologies such

as blog, wiki, mashup, social network and widgets etc, Web 2.0 also features a

rapid development of web applications, thus making internet more ubiquitous and

accessible.

The evolution of robots follows a similar path as web. At beginning, robots

can only take commands from human partner in completing a certain task, where

communication is one way (Robot 1.0). Gradually with more features enabled,

current robots can sense, act and provide feedbacks to humans in a controlled

environment (Robot 2.0). At this stage, both of the web and robotics emphasise

on the interaction with humans. The next generation of robots should be able to

work in collaboration with other robots regardless of their hardwares and platforms

(Robot 3.0). And the future robots are expected to intelligently interact with

humans with the ability to understand their speech, recognise their motion and

predict their intention. As a result, robots can assist humans in accomplishing

complex tasks (Robot 4.0).

Le Kang 10796720 15

CHAPTER 2. LITERATURE REVIEW

2.1.2 The Cutting-edge Web Development Technologies and

Trends

2.1.2.1 The Rise of JavaScript

In the dynamic and constantly changing world of web development, the tool-

box also keeps growing with emerging new technologies. In particular, dynamic

programming languages such as JavaScript, Perl, PHP, python and Ruby have

received much attention. Mikkonen and Taivalsaari [32] summarised the char-

acteristics of dynamic languages as Dynamic typing, Interpretation and Runtime

modification. Compared with conventional static programming language such as

C, C++ and Java, a dynamic languages is more flexible and malleable. More

importantly, from the viewpoint of web developers, these advantages boost their

effectiveness and productivity [41].

JavaScript has become one of the most commonly used programming languages

on the Web and an indispensable feature of every major web browser. It was cre-

ated to add dynamic contents to web pages through direct embedment into HTML

code. Its simplicity and expressive power are attractive and friendly to novice de-

velopers, because of which JavaScript had a reputation of targeting ”amateurs”

audience at the beginning [10]. In more recent years, JavaScript starts to em-

brace module pattern which enables developers to build reusable and extensible

components for big and scalable applications [16].

JavaScript is currently experiencing a “renaissance”, with the increasing pop-

ularity of single-page application (SPA), server-side implementation and a hybrid

of both. A SPA is composed of individual components that can be updated or

replaced independently by using AJAX (Asynchronous JavaScript and XML) [31].

The code of the application is retrieved within a single load, so that the appli-

cation renders and responds as a desktop one, since the page reloading can be

avoided while transferring to other pages [6]. SPA brings better user experience

by implementing more fluid and interactive web pages, yet without extra plugins

or software to be installed. Due to its popularity, many JavaScript frameworks or

UI components libraries have emerged to support the modern SPA development.

Examples are Google’s Angular.js, Twitter’s Bootstrap and Facebook’s ReactJS.

Le Kang 10796720 16

CHAPTER 2. LITERATURE REVIEW

Another revolution of JavaScript language is Node.js, a server-side JavaScript

environment using Google’s V8 engine. Node.js has been adopted by over 120 of

the fortune 500 companies in their everyday business operations [38]. Unlike most

other server-side technologies, Node.js uses an asynchronous I/O eventing model

rather than the conventional multi-threading to support concurrent execution of

business logic [54]. The single-thread event-driven approach with JavaScript’s

highly expressive features makes the code block lightweight and efficient without

having to sacrifice performance. Research has shown [27] that given the same

amount of time, Node.js server can handle more requests than those based on

other dynamic languages such as PHP and Python.

Moreover, with Node.js, developers can avoid language context changes when

working on multi-tier web applications. One paradigm is the use of the MEAN

framework (MongoDB, Express.js, Angular.js and Node.js) for full stack web appli-

cation development. Compared to the traditional LAMP (Linux, Apache, MySQL,

and PHP/Python/Perl) stack architecture, MEAN stack enables developers to cre-

ate more agile software by using a single language across all layers of application

development [17]. Also, it has been proved that a Node.js server significantly out-

performs both Apache and Nginx for serving dynamic contents [5]. In addition,

Express.js, a flexible and robust server-side web application framework built upon

Node.js, encapsulates the lower-level Node.js interface, giving the developer a more

convenient way to handle routings and HTTP operations [44].

According to StackOverflow’s annual developer survey in 2016 [51], JavaScript

in general remains the most popular programming language, even for back-end

developers (Figure 2.2). JavaScript is now under a significant update to the EC-

MAScript 2015 (also known as ES6 “Harmony”) which includes many new features

such as native support for module and classes. The implementation of those fea-

tures in major JavaScript engines is underway now. This evolution, along with the

ongoing standardisation of HTML5, will lead to the creation of more advanced web

applications [24]. Such a trend towards web-based software will cause a paradigm

shift, that is, in the future, the use of conventional binary programs will be lim-

ited to system software, whereas the vast majority of end-user software will be

developed using web technologies [52].

Le Kang 10796720 17

CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Most popular technologies in the 2016 StackOverflow’s annual devel-

oper survey

2.1.2.2 Representational State Transfer (REST) Web APIs

Web 2.0 not only connects people more closely, it also improves the interoperability

of software applications. Web APIs act as connectors of applications and enable

distributed and autonomous software services over the Internet. The modern Web

APIs, which is also referred to as the RESTful services [48], have been increasingly

adopted in providing services on the Web. According to ProgrammableWeb [15],

there were more than 9000 Web APIs in 2013, up from 105 in 2005, and more

and more services published on Web are embracing REST. By October of 2016,

ProgrammableWeb has listed more than 15800 APIs.

REST is a resource-centric HTTP protocol for data communication. The re-

source represents a piece of information that is identified and addressed in a given

format, with XML and JSON being the most frequently adopted [49]. In the

REST architecture, a REST client can access or present the resources via URIs

(also known as endpoints) provided by a REST server. Software applications in

various programming languages or platforms can exchange data, or more tech-

nically, perform CRUD (create, read, update and delete) data persistence, using

HTTP request with verbs such as GET, PUT, POST and DELETE. Figure 2.3

depicts a HTTP request format. With the continued expansion of Web APIs,

developers are more productive now as some complex processes, such as payment

Le Kang 10796720 18

CHAPTER 2. LITERATURE REVIEW

and messaging, become highly reusable with minimum amount of coding.

Figure 2.3: HTTP request format

Tan et al. [53] expounded two reasons for REST Web APIs to become the main-

stream of Web services. First, the CRUD interface greatly improves consumabil-

ity. Second, JSON with REST results in a much simpler and easier understanding

of the communication payload, compared to the traditional WSDL/SOAP-based

services. The authors also pointed out that those emerging areas, such as mo-

bile/Internet of Things (IoT), network, Big Data and machine learning which are

quickly developing and evolving, will lead to an increasing demand for Web APIs

as the delivery channel.

Le Kang 10796720 19

CHAPTER 2. LITERATURE REVIEW

2.1.2.3 Web of Things (WoT)

Figure 2.4: Web of Things

source: https://www.w3.org/WoT/

Before discussing the concept and significance of Web of Things (WoT), it is nec-

essary to identify the difference and relationship between WoT and IoT. In terms

of network layer, the WoT focuses on the interoperability at the application layer,

while the IoT emphasises on the transport-layer [30]. Regarding the scope of the

technology, the IoT is much greater as the it refers to a global ecosystem of smart

things that are able to connect to the Internet and perform computation with their

sensors or actuators. However, there is no unique and universal network protocol

that supports those smart things to communicate with each other seamlessly across

different networking interfaces [22]. To enable the communications regardless of

how they are physically connected, we need a application layer protocol that is

capable of exchanging structured data. Fortunately, the ubiquitous World Wide

Web with REST style architecture can be the solution. Therefore the significance

of WoT is that it is a promising way for the IoT to become a reality.

Le Kang 10796720 20

CHAPTER 2. LITERATURE REVIEW

The architecture of WoT is resource-oriented and all things should be exposed

via RESTful Web APIs over HTTP. As a consequence, smart things and their

services get transportable URIs that one can discover, reference and exchange on

the web [21]. The WoT is targeting at a concrete integration of embedded devices

into the web where everything can be abstracted as web services, despite their

internal operating systems or driven programs. For example, a mobile application

can control the home heating and cooling system based on the current and pre-

dicted temperature from public sensors connected to internet. This is a paradigm

of physical mashups, based on the success of Web 2.0 mashup application, allow-

ing for heterogenous devices to be easily combined with other virtual and physical

resources [20]. As WoT is still at a preliminary state, there are some open issues

such as scalability, security and privacy [59]. However, the WoT has shown its

potential to change the future human life significantly, such as the “as-a-service”

paradigm [7, 8] and smart industry envrionment [14].

2.1.3 The Future of Web and Its Possible Impacts on Robotics

It is commonly mentioned that Web 3.0 is advancing and marching toward a

mainstream adoption [35]. Although there is no clear sign to indicate that a new

revolution of web has taken place, such as a breakthrough in web technology or a

fundamental change of how we use the web, human life in the future will no doubt

be greatly changed by the technologies and features of Web 3.0 such as Semantic

Web, 3D Web, Media-centric Web, Pervasive Web, Database as Web pages [35].

They will enable people to achieve so many things with ease and convenience. For

example, you may be travelling overseas and become worried about your favourite

plant at home. You open an mobile application for your housekeeper, a robot, and

tells him that you would like to see the plant. Then he goes to the balcony and

starts a 3D live stream so you can ensure that the plant is indeed under a good

care. That is because your housekeeper can read the whether sensors so that he

will put the plant indoors when it is raining and water it when it is dry.

This is a scenario where a robot is able to leverage web technologies to serve

people autonomously in a web-based smart environment. As outlined by Mayer

[30], the possible impact on robotics from the future web is that, “Web-based smart

Le Kang 10796720 21

CHAPTER 2. LITERATURE REVIEW

environments could support robotic devices in achieving their tasks and, vice versa,

robots could extend the capabilities of environments that integrate smart things,

i.e. devices with processing and communication capabilities”.

2.2 Robot Web Tools: State of the Art

2.2.1 Rationale

Robot application development is difficult for two main reasons. First, hardware

varies for different types of robot, as a result code reuse is non-trivial [45]. Second,

the complexity of robot systems makes it difficult for application programers to

be productive unless they are of high expertise [39].

The first issue has been tackled by using robot middleware systems that pro-

vide common interfaces for code sharing and reusing. ROS is a commonly adopted

open source robot operating system that abstracts low-level device control and pro-

vides a communication mechanism across robot components via network protocol.

ROS allows researchers and developers to build robot applications with a universal

standard for different types of robots. However, the middleware system is quite

large and complicated, as a result, the learning curve of ROS is steep especially

for novice users [1], which leads to the second issue. Thus, in order to make robot

development accessible to a broader user base, a widely used technology as an

auxiliary tool is necessary to leverage the middleware framework.

As an attempt to address the above issues, in 2012, the Robot Web Tools

(RWT) 1 team officially introduced the project that enables web interfaces for

robotics [39]. Such interfaces allow users to remotely access robots for development

purposes via modern web browser that supports HTML5 websocket as the only

advanced dependency. RWT provides a convenient abstraction to the core ROS

functionality yet harnesses the power of ROS, so that it is more accessible for

application programmers who are not themselves ROS users.

1Robot Web Tools (http://robotwebtools.org) is a robotics and JavaScript research organisa-

tion for maintaining a collection of open-source modules and tools for building web-based robot

applications.

Le Kang 10796720 22

http://robotwebtools.org

CHAPTER 2. LITERATURE REVIEW

2.2.2 Under the Hood

RWT is built upon rosbridge, an abstraction layer in ROS which provides a simple,

socket-based programmatic access to robot interfaces and algorithms provided by

ROS [9]. More concretely, given that ROS allows robots to be controlled through

topic messages, rosbridge protocol provides access to the underlying ROS messages

and services from a remote client by using serialised JSON objects. As rosbridge

serves in a client-server paradigm, it is suitable for wide area networks and human-

robot interaction at a global scale through modern web browsers [57]. rosbridge

supports communications through either HTML5 websockets or standard TCP/IP

sockets, without restriction to any programming or runtime. Figure 2.5 illustrates

the workflow of an web-based application that uses RWT.

Figure 2.5: Workflow of an application using robot web tools

Another core component of RWT is roslibjs (formerly as rosjs), which is a

JavaScript client library for communication of ROS topics, services and actions

between browser and rosbridge [39]. The interfaces provided by roslibjs allows

web developers to publish and subscribe to ROS topics in a JavaScript runtime

environment as they do in ROS. It is designed to be event-based in order to make

UI more responsive and decouple from other JavaScript modules [1]. In addition,

it is fully compatible with server-side JavaScript environment Node.js.

The conjunction of rosbridge and roslibjs is significant for three reasons: 1)

Le Kang 10796720 23

CHAPTER 2. LITERATURE REVIEW

the system-level complexity of ROS is hidden behind the abstraction layer so that

developers can focus more on application level; 2) web-based robot applications

are portable across platforms, therefore software update and iteration are made

easier; 3) by leveraging ubiquitous web browsers, robots are accessible even to

nontechnical users.

2.2.3 Tools and Applications

RWT has been used by a number of projects for developing web-based robot ap-

plications. The community of RWT has been growing tremendously along with

several libraries, widgets and systems for general operations, such as task execu-

tion, visualisation and navigation. A list of popular tools and their related usages

are presented as follows:

1) ros3djs : a 3D visualisation library for rendering ROS-related robot models

on the HTML5 <canvas> element. It utilises the power of three.js [12] which

is built on top of WebGL, a JavaScript API for rendering interactive computer

graphics within any compatible web browser without plug-ins. The library includes

standard ROS features such as interactive marker [19], Unified Robot Description

Format (URDF) [23] and maps. The PR2 Remote Lab project [43] used this 3D

visualisation method to display the PR2 robot model and poses, as it can provide

intuitive view of robot’s states with a relatively low bandwidth cost.

2) web video server : a ROS node for streaming ROS image topics via HTTP

protocol. There are two transport options from ROS: MJPEG and VP8. Although

VP8 is more efficient, it has an issue that results in an unavoidable delay or lag in

transmission [57]. Lee [26] adopted MJEPG stream to provide vision stream from

the PR2 robot in his web application, so that remote users can control the robot

to perform simple object manipulation without a physical access to it.

3) RMS (Robot Management System): a remote lab management tool devel-

oped by Toris [55], and designed to control ROS enabled robots from the web. It

is a content management system built upon the Model-View-Controller framework

CakePHP and backed by a MySQL databases. RMS offers a web simulation in-

terface for researchers to conduct experiments in parallel without any concern or

risk of damaging the robot or its surroundings. Furthermore, Toris [56] deployed

Le Kang 10796720 24

CHAPTER 2. LITERATURE REVIEW

an instance of RMS in the project of RobotsFor.Me for researchers to develop,

prototype, and run preliminary tests on learning algorithms, interfaces, or other

methodologies in a rapid development cycle.

The tools and their implementations present a diverse set of use cases that

showcase the efficiency of web-based application development for human-robot

interaction. These standalone widgets or libraries help generate robot user in-

terfaces that are more flexible and responsive. Web developers can use them in

a “plug-and-play” manner without concerning the underlying technologies. The

core ROS middleware requires a considerable learning curve including a general

understanding of UNIX systems and languages such as C++ or Python [1]. Such

requirements become obstacles for web developers to participate robotics research

and development. Robot web tools as an abstraction layer expose the functionality

of ROS via common web development tools such as JavaScript.

2.3 Current Applications of Web Technologies

for Robotics

2.3.1 Robotics Education and Training

Robots are expensive research equipments. Take the humanoid robot PR2 as an

example, it was commercially available at a price of approximately 400,000 US

dollars [46]. This leads to a poor availability and accessibility of robotic hard-

ware, making it difficult for students to learn about robot platform and perform

experiments.

To expand the impact of robotics education, remote or online robot laboratories

that can be accessed through web interfaces are considered as a successful solution.

Djalic et al. [13] discussed the significance of the remote laboratory as an example

of an effective E-learning tool intended for distance education of undergraduate,

graduate and PhD students in the field of robotics and automation. Ordua et al.

[36] presented a web-based framework which supports load balance and transitive

sharing, so that the remote laboratories can be shared with other schools or univer-

sities. Santana et al. [50] introduced the Distance Laboratory System that allows

Le Kang 10796720 25

CHAPTER 2. LITERATURE REVIEW

learning and adjusting predefined controllers, designing new controllers, testing

and analysing the performance of the predefined/designed controllers over a set

of physical devices through the Internet, where the client and the workstation are

connected with a PHP powered web server. Casa et al. [4] presented Robotic

Programming Network(RPN), a web-based extension for ROS-based remote lab-

oratories and online robots, allowing for rapid and seamless execution of a ROS

program in a remote web browser. The system can ease the learning process of

the entry-level robot software programming for students.

2.3.2 Programming by Demonstrations

Programming by Demonstration (PbD), also referred to as imitation learning or

learning from Demonstration, is a skill development strategy that allows a robot

to acquire a new skill through demonstrated examples. As a result, the process

of skill transfer can automate the tedious and complex manual programming for

the robot. However, The data collection and transformation from human demon-

strations often involve operations on a real robot for manual joint trajectories

configuration, which makes the process inefficient and time-consuming.

The web-based approach is proved to be a promising way to address this issue.

The PR2 Remote Lab Project, which has bas been mentioned before in 2.2.3, offers

opportunities for researchers to compare and evaluate their works through web in-

terfaces during the PbD process. Osentoski et al. [40] described the utilisation of

the project in the Robot Learning from Demonstration Challenge held in conjunc-

tion with the AAAI-11 Conference on Artificial Intelligence. They claimed that

“such technologies enable researchers to create a variety of different interactions

quickly, efficiently, and in platform-agnostic fashion”

Moreover, Ratner et al. [47] proposed a web-based infrastructure for recording

large numbers of high-dimensional demonstrations of mobile manipulation tasks.

Compared to alternative approaches such as motion capture system [25] or haptic

technology [42], the web-based interface coupled with light-weight simulator does

not require any additional hardware and software. Their remote lab is capable

of gathering demonstrations from non-experts through crowdsourcing platforms

such as Amazon Mechanical Turk. Since their server can support 10 concurrent

Le Kang 10796720 26

CHAPTER 2. LITERATURE REVIEW

demonstrators, the demonstration stage becomes more efficient and leverages a

greater community effort.

2.3.3 Knowledge-based Cloud Robotics

Although World Wide Web was initially designed for human to share knowledge

and information, robots can also take the advantage of such a opportunity to

expand their capability of object cognition and task execution. RoboEarth [58]

is a system aiming at building a WWW for robots and allow them to store and

share knowledge and information independent of specific robot hardware. The

system consists of various software components in a cloud-robot architecture. The

RoboEarth DB stores object models, semantic task descriptions and maps and

encode them in Web Ontology Language using typed links and URIs. Rapyuta

[33] as the RoboEarth cloud engine can access the knowledge database and perform

heavy computation on the data over the cloud.

Similar to RoboEarth, openEASE platform [2] is a web-based services which is

remotely accessible for robot knowledge representation and processing. It aims at

facilitating the use of Artificial Intelligence technology to equip robots with knowl-

edge and reasoning capabilities. The platform consists of a big-data database,

an encyclopedic knowledge base and software tools for querying, visualising and

analysing. It provides a web-based graphical interface where users can retrieve,

visualise and analyse the experiment data.

2.4 Conclusion

It is no doubt that the introduction of robotics has changed people’s lives in many

different ways. Although the development of robotics has been impressive over

the last decade, accessibility and usability issues are still need to be address for

robotics to be more common and helpful in daily lives in addition to professional

industries. This can only be achieved with more flexible technologies compared to

conventional methods.

The various web technologies mentioned above are expected to play an impor-

Le Kang 10796720 27

CHAPTER 2. LITERATURE REVIEW

tant role in the expansion of robotics. The existence and development of Web

allows robots to be more adaptable and accessed by users more freely and conve-

niently on different devices. In addition, the emerging development language and

technologies provide much potentials in building relevant applications in managing

and communicating with robots. The many applications of web technologies for

robotics, discussed in the previous section, indicate a promising future of further

utilising web tools to use robots more widely in people’s daily lives.

The central benefit of the conjunction of web technologies and robotics is that,

it generate interest in robotics for a larger developer community of web develop-

ment. This is crucial in the expansion of robots into more common areas rather

than professional industries, as the robotics research and development requires

certain amount of expertise when programming on ROS-based application.

Motivated by the many advantages of web technologies, I propose to use web

tools to develop robot applications, with a user-friendly interface that can be un-

derstood and implemented by people without programming or engineering back-

ground. The application will act as an important communication means between

the robot and the user. Most importantly, the user is protected from the compli-

cation of the coding work hidden behind the interface, and instead can focus on

achieving his goals to control and communicate with the robot.

Moreover, in addition to the development of robot applications, I also seek

opportunities to operate and provide the robot application as online web services.

The applications will be adapted to perform different tasks and interact with

robots in distinctive ways. As a result, they can be adopted by people for various

purposes. The realisation of the accessible web services will enable more people

to benefit from robotic technologies, and help the development of robotics so that

robots will become closer and common to ordinary people.

Le Kang 10796720 28

Chapter 3

Research Design

This chapter introduces the overall design of the research. In order to address the

research gap discussed in the literature review, three research questions are iden-

tified. As the attempt to answer the research questions, two independent projects

will be carried out with Rapid Application Development (RAD) Methodology. The

first project is small and simple, which aims at prototyping and proof of concept;

while the second project is larger, more complex and more production-ready.

The chapter is organised as follows: Section 3.1 presents the three research

questions, Section 3.2 performs a tools analysis to address the first research ques-

tion before looking into the research projects. The instruction to set up the tools

and the environment of the research project is provided in Section 3.3, with the

aim to build a solid underlying infrastructure for both of the projects. At last,

Section 3.4 gives an overview of the two research projects with their background

and objective.

3.1 Identify Research Questions

As mentioned and discussed in the literature review, many applications for robotics

development and research are based on web technologies. Commonly those appli-

cations are design to achieve some specific goal, which can be summarised as “how

to use Web technology X (such as robot web tools, cloud platform or web ser-

Le Kang 10796720 29

CHAPTER 3. RESEARCH DESIGN

vices) to facilitate the production or result of Y (such as remote robots access,

skill acquiring or knowledge sharing)”. Although those applications are successful

in fulfilling their objectives, the implementation of modern web application frame-

work into robot software development as a general paradigm has not yet attracted

much attention.

To take advantage of the many merits of web-based applications, the focus of

this research is to seamlessly integrate various web technologies into robot software

application, with a purpose to generalise the use of Web-applications so that they

are not just simply used to solve one certain problem. I expect a generalised

implementation of web-based robot application where a robot or a instance of

robot environment can serve and/or consume web services from different sources

with various resources, regardless of its lower level program stack in its operating

system.

In order to realise this, three research questions are to be addressed:

1. What are the tools (such as programming languages and frameworks) selected

for building the web-based robot application?

The question is tied to the underlying infrastructure of the research projects.

Programming languages and frameworks for web application vary in special-

ity, performance and complexity. Some of them are better suited to work in

a ROS-enabled environment than others. The selection of the components

for the application infrastructure comes down to its ease of development,

UI usability and compatibility with ROS. More specifically, since web appli-

cation architecture such as MEAN stack has demonstrated success for web

development, will it be suitable for robot software development as well?

2. Will the web-based robot application improve the end-user-programmability

for robotics research and development?

Given that the potential users of the applications have limited background

of ROS and restricted access to ROS-enabled robots or environment, the

objective of the application is to provide intuitive UI and programmability

for robot control.

Le Kang 10796720 30

CHAPTER 3. RESEARCH DESIGN

3. How can the Web-based robot application leverage other Web services to ben-

efit the human-robot interaction and social activities?

In order for ordinary people to be more familiar with using robots on a

daily basis, one of the challenges we face is to create effective and efficient

communication interfaces between humans and robots. Since many web

services provide programable APIs for communication tools such as SMS

and email, how to leverage those services rather than create a new one is

crucial.

3.2 Tools Analysis

As discussed in the literature review, JavaScript is one of the most popular pro-

gramming languages for Web application development. Compared with other pro-

gramming languages, JavaScript has following advantages to be applied in this

research projects:

• Easy implementation and testing :

There is no requirement of platform or runtime for running client-side JavaScript

application. Any web browser can execute and debug JavaScript code.

• High customisation and interactivity :

Thanks to AJAX (Asynchronous JavaScript and XML), SPAs (Single Page

Applications) allow the users to create interactive and dynamic features as

well as highly responsive interfaces without having to wait for the server to

send new pages.

• Full-stack development :

With Node.js, Javascript is capable of performing back-end tasks. Thus, dur-

ing application development process, the change in programming language

contexts can be avoided.

• Large community :

Le Kang 10796720 31

CHAPTER 3. RESEARCH DESIGN

There are many open-source libraries and frameworks for building scalable,

reusable and maintainable Javascript code. Utilised well, these sources can

help significantly improve the productivity, which is also a good practice for

rapid application development. For developers, this is less error-prone as the

code style will be consistent.

• ROS integration:

The majority of robot web tools are written in JavaScript, allowing for seam-

less interfacing with ROS from modern web browsers.

Given the above advantages, JavaScript is selected for both client-side and

server-side developments. On the client side, Angular.js1 is used as the backbone

of the front-end SPA to make the UI more interactive and user-friendly. Angular.js,

developed by Google, is one of the most used JavaScript framework for developing

SPA. It extends HTML by defining directives in order to build dynamic views. It

also supports two-way data binding so that the view and JavaScript object model

are synchronised.

On the server side, Express.js2 is adopted as the framework. Express.js is

a minimal and flexible Node.js web application framework which is designed for

building JavaScript Object Notation (JSON) based APIs. It facilitates the rapid

development of Node based applications by leveraging various types of middleware,

and it takes less coding and time to create complex server-side functions.

The database is enabled by MongoDB3, a NoSQL database. As the data struc-

tures for different types of robots are often dynamic (such as joint parameters

and sensor messages), NoSQL database is ideal for storing data in heterogeneous

format. MongoDB uses JSON-like documents with schemas and the syntax of

making queries and updates is based on JavaScript. Instead of configuring local

MongoDB instance, mLab4, a MongoDB hosting platform is used to avoid unnec-

essary development configurations.

1https://angularjs.org/
2http://expressjs.com/
3https://www.mongodb.com/
4https://mlab.com/

Le Kang 10796720 32

https://angularjs.org/
http://expressjs.com/
https://www.mongodb.com/
https://mlab.com/

CHAPTER 3. RESEARCH DESIGN

Figure 3.1: The MEAN stack

source: http://joaopsilva.github.io/talks/End-to-End-JavaScript-with-the-MEAN-Stack/#/2

Therefore, the underlying architecture for both research projects is the MEAN

(MongoDB, Express.js, Angular.js and Node.js) JavaScript stack, as illustrated

in Figure 3.1. The reasons for adopting this architecture are summarised in the

following:

• Isomorphic code: JavaScript runs in both client-side and server-side. It is

much easier for code maintenance.

• Unified data communication format: JSON as a common data format

for communication through web application, ROS and database.

• Simplified server layer: Express.js is a flexible, robust yet lightweight

server-side framework that exposes node functionalities via simple APIs.

• Rich UI features: Angular.js provides features for supporting versatile

and dynamic views for SPA, such as two-way data binding, view template,

dependency injection and programmable directive.

Le Kang 10796720 33

CHAPTER 3. RESEARCH DESIGN

3.3 Development Environment and Tools Setup

The development environment is the Unix-like Macintosh operating systems with

latest version (v6.8.0) of Node.js installed. Node.js provides a package manager

called npm5 for installing, upgrading, configuring and removing packages. A pack-

age is just a directory of reusable code which is also referred to as modules. Every

npm package has a file called package.json with meta data about the package.

A typical Node-based application is initialised as a npm package and will de-

pend on dozens or hundreds of packages, and those dependencies are stored in the

node modules folder.

The first package used is another package manager bower 6. While npm is

mainly for handling development tools (such as bower) and back-end packages,

bower is solely for managing the front-end dependencies, which are kept in the

bower components folder and tracked with a manifest file bower.json. The utilisa-

tion of both packages helps to set a clear boundary for package management where

client- and server-side are divided, so that application tiers can be more isolated

and decoupled.

With npm and bower, consuming dependencies will be more convenient. How-

ever, to make them more organised and avoid cumbersome manual configuration

in a large project, an automated task runner is necessary. Gulp.js7 is a develop-

ment tool that fulfils the requirement. Gulp.js is a file streaming framework for

automating repetitive tasks such as bundling and minifying JavaScript libraries

and Cascading Style Sheets (CSS), running code analysis and copying files to an

output directory. As the second research project is very complex, Gulp.js will help

to solve the problem of repetition during product building and deploying process.

The final part is to create an isolated ROS environment. It is hosted on Ubuntu

12.04 (Precise) operating system in a virtual machine. The ROS version for this

research is Hydro, which is commonly used by various robot platforms. To in-

tegrate with web applications, rosbridge, web video server and tf2 web republisher

packages are installed.

5https://www.npmjs.com/
6https://bower.io/
7http://gulpjs.com/

Le Kang 10796720 34

https://www.npmjs.com/
https://bower.io/
http://gulpjs.com/

CHAPTER 3. RESEARCH DESIGN

The detailed setup instruction is listed in Appendix A.

3.4 Research Projects Overview

Figure 3.2: Robots used in this research: PR2 (left) and REEM (right)

source: http://openrobots.org and http://pal-robotics.com/

The first research project is a simple web-based motion control application for PR2

humanoid robot, which addresses research question 2. It presents a application

that integrates modern web application framework with a ROS environment for

robot software development. The design helps web developer get involved with

robotics with pure JavaScript and HTML.

Application “Web motion control for PR2” aims to give end-users an intu-

itive web interface to control and configure gestures or motions for high degree-

of-freedom (DOF) robot PR2. Although ROS packages such as RViz and MoveIt

provide more advanced functionalities for motion planning, they are platform de-

pendent and the configurations are complex. This application aims to cut off those

requirements and allow the users to program with simple UI tools. The end-users

are isolated from the complicated ROS environment so that they can focus on

getting the desired results. The application also provides 3D visualisation of the

robot model so users can receive real-time feedback. This project is a prototype of

web-based robot application development environment. As a proof of concept, it

Le Kang 10796720 35

CHAPTER 3. RESEARCH DESIGN

also examines the feasibility for implementing more advanced robotics development

into a web-based environment.

The second research project gives a complete web-based software solution for

enabling REEM humanoid robot to promote products for shopkeepers and collect

customer feedback in a shopping centre, which addresses research question 3. The

web-based distributed system broadens the social means for service robot to inter-

act with ordinary people. Compared to the first project, the second project has

more ambitious objectives. It attempts to explore the potential use of robots in a

business context and presents a distributed web system running on various plat-

forms including the REEM robot platform called Chip, a full-sized humanoid ser-

vice robot. The web system offers a commercially viable solution that allows Chip

to work in a shopping centre to distribute product sample and conduct surveys

autonomously. Chip serves the tenants of the shopping centre as their employee

and interacts with customers as a sale person. The main communication tools are

web applications.

To facilitate its functions, Chip has its own website called Chip for Hire, where

the shopkeepers can build their product portfolios, design survey questions and

hire Chip to promote the product and collect customer feedbacks via a survey. As

Chip has a touch screen in its torso, it is able to present interactive web interface

to customers. Multiple web services are used to improve Chip’s social ability. In

addition, Chip itself is also a service provider. This project aims to integrate

various web technologies into the robot platform so that Chip can get involved in

a daily-life environment and realise commercial values.

In order to accelerate the development process and still guarantee the software

quality, rapid application development methodology is utilised for delivering solu-

tions of the research projects, as RAD often embraces object-oriented programming

methodology and emphasises on software reusability. Therefore, the development

will focus on leveraging existing tools to achieve the goals, rather than creating

new ones.

Le Kang 10796720 36

Chapter 4

Web Motion Control for PR2

This chapter introduces the application designed for the purpose of motion control

for PR2. PR2, developed by Willow Garage, is a high DoF (Degrees of Freedom)

robot capable of performing various tasks. It is equiped with a full sensor system

as well as backdriveable arms and grippers for it to be more flexible in completing

tasks. The application in this chapter acts as the communication tool between the

human instructor and PR2, so that the PR2 can understand the commands sent

by the instructor in a quick and accurate way via a web interface.

Section 4.1 presents both the client side and server side structures, which form

the basis of the application. Section 4.2 introduces the user interface of the appli-

cation, including 3D visualisation, joint control and vision live stream. Section 4.3

is an use case of recording demonstration data for robot learning ball catching skill

through the web motion control. Section 4.4 looks at the limitation of the current

version of the application. Section 4.5 discusses the impact of the application.

4.1 Software Infrastructure

Figure 4.1 presents an overview of the software infrastructure. The software has

independent structures on its client side and server sider, which are described in

the following two subsections respectively.

Le Kang 10796720 37

CHAPTER 4. WEB MOTION CONTROL FOR PR2

Figure 4.1: Overview of the infrastructure of web motion control

4.1.1 Structure: client-side

The software on the client side is built upon the Angular.js framework as an single

page application. As Angular.js offers a lot of flexibility to separate presentation

logic from business logic and presentation state, the client side is more close to

a MVVM (Model-View-ViewModel) structure. The ViewModel is decorated by

a Angular’s build-in function called Controller, which handles all the application

behaviour. Meanwhile, the two-way data binding feature helps to automatically

update the views whenever the model changes. Therefore, application views can

be abstracted by templates that embed Angular-specific elements, attributes and

expressions.

The client-side also leverages many other resources and they are managed by

bower. Two of those techniques, Angular Material1 and Angular UI-Router 2 are es-

1https://material.angularjs.org/
2https://github.com/angular-ui/ui-router

Le Kang 10796720 38

https://material.angularjs.org/
https://github.com/angular-ui/ui-router

CHAPTER 4. WEB MOTION CONTROL FOR PR2

pecially important. Angular Material is a UI framework providing a set of reusable,

well-tested and accessible UI components based on Google’s Material Design Spec-

ification [18]. All implementations of UI features on the client-side totally rely on

Angular Material.

Angular UI-Router is a routing framework for Angular.js. It updates the

browser’s URL as the user navigates through the app via state machine, which

manages the transitions between those application states in a transaction-like man-

ner. The states of the application have a hierarchical tree structure. Appendix

B.1 presents the configuration of client-side routers, where states are modelled

according to the function scopes as well as the devices that access the application.

Robot web tools are also key modules on the client-side. The implementation

will be described with more details in Section 4.2.

4.1.2 Structure: server-side

The server side of the software is divided into three layers: ROS middleware, web

services and database. The ROS middleware layer runs ROS nodes for controlling

the PR2 robot and exposing ROS to client-side via rosbridge. The following launch

file will launch the necessary nodes:

1 <launch>

2 <include file="$(find gazebo_ros)/launch/empty_world.launch">

3 <arg name="gui" value="false"/>

4 <arg name="headless" value="true"/>

5 </include>

6 <include file="$(find pr2_gazebo)/launch/pr2.launch"/>

7 <include file="$(find rosbridge_server)/launch/rosbridge_websocket.launch"/>

8 <node name="tf2_web_republisher" pkg="tf2_web_republisher" type="tf2_web_republisher"/>

9 <include file="$(find pr2_web_motion_control)/launch/l_joint.launch"/>

10 <include file="$(find pr2_web_motion_control)/launch/r_joint.launch"/>

11 <include file="$(find pr2_web_motion_control)/launch/head.launch"/>

12 <include file="$(find pr2_web_motion_control)/launch/torso.launch"/>

13 <node name="pr2_arms_controller" pkg="pr2_web_motion_control" type="pr2_arms_controller.py"

14 output="screen"/>

15 </launch>

Line 2-6 start a PR2 robot simulation with Gazebo. To improve the perfor-

mance of the simulator, the graphical UI is disabled since the visualisation will

be shifted to the web interface. Line 7 launches the rosbridge server. The node

Le Kang 10796720 39

CHAPTER 4. WEB MOTION CONTROL FOR PR2

tf2 web republisher in the following line is used to throttle and precompute TF

transform information which will be sent to web client via rosbridge. Line 9-

12 load the lower level PID (Proportional-Integral-Derivative) controllers to re-

place the default joint trajectory controllers for robot arms, head and torso. The

reason of using PID controllers is that they supports faster simulation and the

structure of control parameters are simpler. Since the arms have 14 joints in

total, the python script pr2 arms controller in line 13 will create a topic called

“arms motion control” to control both of the arm as a whole rather than invoking

each joint separately. The source code is shown in the Appendix B.2.

The use of PID controllers and the script pr2 arms controller are not necessary

if the developer does not have the knowledge of ROS programming. This is purely

for the sake of simplifying the control process, and merely using the web interface

can achieve the same goal as the script does. The pr2 arms controller also builds a

connection to MongoDB to read the configuration of predefined motions by using

pymongo, which is a python driver for working with MongoDB.

The web server is in a Node runtime environment and uses Express.js as its

API framework. The server script is simple yet efficient, as shown in Appendix

B.3. There is only one RESTful API on the web server just for users to save their

designed robot motions.

The mongoose module is an object modelling tool for Node that essentially

works like an ORM (Object Relational Mapping). It defines the attributes of

motion schema and returns a constructor which can be saved as a document into

the database. With the middleware body-parser, the motion data can be extracted

from request body and transformed to motion model directly.

The web server does not have any connection to ROS, as it just handles the re-

quests from client-side. As depicted from the infrastructure overview (Figure 4.1),

the web server serves as a publisher to save motions to database, while ROS sub-

scribes those motions configured by different users. Therefore, the cloud database

is like a shared knowledge pool where any PR2 robot that connected into the

system is able to perform motions designed by different users.

Le Kang 10796720 40

CHAPTER 4. WEB MOTION CONTROL FOR PR2

4.2 User Interface

Figure 4.2: User interface of web motion control

As users may not be local or do not have physical access to robot, the goal of the

UI design is to provide convenient and intuitive widgets to control a real robot or

perform simulation with a ROS instance. An screenshot of the web interface is

shown in Figure 4.2. The web interface of the system offers three features with

the robot web tools: 3D robot model visualisation, joint control panel and vision

live stream.

4.2.1 3D Robot Model Visualisation

As shown on the left in Figure 4.2, the 3D visualisation interface gives users a real-

time feedback of robot’s state during operation, as the message used for updating

the robot model and transferred from ROS to the web client requires low band-

width. On the ROS side, tf2 web republisher computes and sends the transform

information via rosbridge. Then in the web client, the URDF is loaded by ros3djs,

with 3D JavaScript library three.js for rendering.

Le Kang 10796720 41

CHAPTER 4. WEB MOTION CONTROL FOR PR2

Appendix B.4 presents the source code for the whole process:

1. Create a 3D viewer and setup the dimensions and the element id where the

viewer is placed;

2. Initialise the TF client which subscribes the information from tf2 web republisher ;

3. Load URDF files from assets folder and render the client by using the robot

description parameter from the ROS parameter server.

4.2.2 Joint Control Panel

The most useful interface for this software is the joint control panel since it provides

the programmability to the end-users regardless their programming knowledge of

any kind. The control panel uses Angular Material slider UI component as the

configuration tool for setting the position of each joint from robot’s arms, head

and torso.

Once the URDF is loaded, all the control sliders will first set the minimum

and maximum joint limits to fulfill the safety check by querying the robot de-

scription parameters from ROS. Then the control sliders will subscribe the sen-

sor msgs/JointState topic to get the current joint positions. Appendix B.5 is the

source code for the initialisation of joint control panel. It fetches the robot de-

scription into a DOM parser and filter each node by its type and name to find the

desired joint information. After initialisation, Angular will listen to the change

of each slider and publishes the new joint positions via roslibjs once change is

detected.

Users can save the arms’ joint positions as a gesture with a chosen name,

which can be used with other gestures as a plan of robot motion. For example, to

configure a wave hand motion, the whole process can be divided into several way

points during the hand movement, and each of the way point is a static gesture

with certain joint positions.

Le Kang 10796720 42

CHAPTER 4. WEB MOTION CONTROL FOR PR2

4.2.3 Robot Vision Live Stream

Robot vision live stream provides a natural mean for remote users to interact with

a real robot and its surrounding environment as well as checking the progress. The

ROS node web video server provides a video stream of a ROS camera image topic

which can be accessed via HTTP. It does not depend on rosbridge or roslibjs since

it opens a separate port (default 8080) for incoming HTTP requests. The default

stream type is MJPEG, in which each frame is compressed as a JPEG image.

Therefore, the video stream can be embedded into HTML element with

URL in the following pattern: http://<ROS address>:8080/stream?topic={ros-

topic}, where the ros-topic is the corresponding topic that publishes the image

data from the target camera. Users can also configure the quality via URL to

accommodate different connection speeds. With the vision live stream, the risk

of damaging the robot or its surroundings can be reduced when controlling a real

robot by remote users.

4.3 Use Case: Recording Demonstrations for PR2

Learning Ball Catching

This section presents a use case implemented using the web motion control to

record demonstrations data for PR2 learning ball catching. Catching a thrown

ball is a complex skill that requires fast, dextrous manipulation as well as seamless

human-robot interaction. This skill is not difficult for most humans to acquire.

However, it is complicated for a robot as the variables for ball catching skill are

difficult to model in a fast changing environment. Compared with traditional

approaches such as trajectory calculation or prediction and 3D ball position re-

constructing, learning from demonstrations doesn’t require complex task modelling

and explicit programming. By investigating the relationships between the initial

ball positions in the air and the catching time, it is possible to decide the catching

time before the ball reaches the target. Hence, efficiently collecting data during

demonstrations is very essential to achieve the goal.

Le Kang 10796720 43

CHAPTER 4. WEB MOTION CONTROL FOR PR2

4.3.1 Design

Although PR2 web motion control features joint control via sliders, it is noted

that using just a mouse and keyboard is difficult for controlling PR2 to perform

real-time manipulation tasks like ball catching. Therefore, to create more effec-

tive controlling interface, smartphone is used to solve the real-time control prob-

lem. Smartphones like Androids and iPhones provide motion sensors to detect

how fast the device is moving along its three axes respectively: X (side-to-side),

Y(forward/backward) and Z(up/down). This establishes a direct control from hu-

man to robot by mapping the smartphone motion triggered by the human user

and the joint controller of the robot. The new implementation of DeviceMotion

events in HTML5 enables developers to access the sensor data using javascript

within mobile browsers such as Mobile Safari, Chrome, Opera Mobile and Firefox.

Therefore, the smartphone controller can be integrated into the PR2 web motion

control without installing any extra software.

(a) Monitor view (b) Controller view

Figure 4.3: User interfaces for monitor and controller

The PR2 web motion control which is running on PC in this experiment plays a

monitor role. It provides a live vision stream from PR2 for remote users to conduct

the experiment (Figure 4.3 (a)). While, the application provides different user

interfaces (Figure 4.3 (b)) when using smartphone as the motion controller. Instead

of monitoring the robot state and controlling its joint position, the smartphone

interface offers “catch” buttons for commanding PR2 to do the task. Before tele-

Le Kang 10796720 44

CHAPTER 4. WEB MOTION CONTROL FOR PR2

operating the robot, the user is required to register in order to select an existing

ROS connection established by the monitor. This is for the user management as

the system allows multiple users to connect to the same ROS instance for the

control purposes. To avoid control conflict, it only allows one control process at

a time. Both server-side and client-side are extended with socket.io3 framework

to notify users if someone is in control or the control position is currently vacant.

Socket.io is a real-time engine that features instant data communication between

back-end and front-end. It also helps to build a communication tunnel across ROS,

client-side and server-side. Every experiment dataset is sent by ROS via rosbridge

to the client-side, and it is pushed further to the server-side by socket.io, where

the dataset is finally stored into MongoDB for data analytics in the future. The

following figure illustrates the high-level infrastructure design for the experiment.

Figure 4.4: High-level infrastructure for the use case

3http://socket.io/

Le Kang 10796720 45

CHAPTER 4. WEB MOTION CONTROL FOR PR2

4.3.2 Procedure

By using the joint control panel, two motions for preparing for the catch (Figure

4.5 (a)) and finishing the catch (Figure 4.5 (b)) can be defined respectively. During

the learning process, a human partner is needed to make a fairly good ball throw

to the PR2 robot. At the same time, the demonstrator, onsite or offsite, will hold a

smartphone in one hand and conduct a fetch motion, as if to catch a ball thrown to

him or herself. The fetch motion will be detected by the smartphone and signalled

to PR2 via the web motion control application, so that instantly PR2 will perform

a catch motion as well.

(a) Prepare catching (b) Finish catching

Figure 4.5: Motions for ball catching

Ball detecting and tracking is based on a computer vision technique, namely

OpenCV, which is integrated into ROS program stacks. The ball used in the

experiment is purely red, so it can be tracked by defining the lower and upper

boundaries of the red colour with OpenCV. Source code in Appendix B.6 detects

the ball and marks its centre and boundary in every video frame.

The data collection for each catch trial occurs on the ROS side. The PR2 robot

is equipped with Microsoft Kinect sensor which is able to acquire the object’s

Cartesian coordinates as well as the depth value for distance. When a trial begins,

PR2 will detect the ball held by the human partner and records its initial depth

value, then it poses the gesture to preparing for a catch. The ball is perceived to

Le Kang 10796720 46

CHAPTER 4. WEB MOTION CONTROL FOR PR2

be thrown once the change of the ball image depth exceeds a pre-defined threshold.

At this time, the timestamp is set to 0 and the ball position is recorded as the

first waypoint in the trajectory. The ball positions will be captured in the next 3

image frames as well as the timestamp when PR2 tries to catch the ball. Figure

4.6 illustrates the process.

As the next step, the positions of the 4 waypoints and the catch timestamp

since the first waypoint will be sent to the demonstrator’s smartphone for further

evaluation. As depicted in Figure 4.7, the demonstrator will give further feedback

according to the PR2’s performance or reject the trial if the data is obviously

invalid. The collected data will be used for training to find out the relationship

between those waypoints and the catch time. The algorithm for training is beyond

the scope of this dissertation. Nevertheless, the experiment provides an intuitive

and efficient paradigm for collecting demonstrations with web based solution, in

which physical access to the robot is not necessary for the demonstrator.

Figure 4.6: Data collection for a ball catch trial

Le Kang 10796720 47

CHAPTER 4. WEB MOTION CONTROL FOR PR2

Figure 4.7: Data feedback of a ball catch trial

4.4 Known Limitations

There are some known limitations with the web motion control application. First,

the 3D visualisation is very simple and not able to simulate the interaction with

other objects. Also, the position of the robot is fixed and moving the robot is

not applicable. As a result, numerous aspects for robot control and manipulation

cannot be addressed.

Second, it is lack of efficient and real-time control method via the web interface.

Network latency issue always presents in the teleoperation especially when it is

involved in high bandwidth cost processes such as video streaming. Furthermore,

for high DoF robots, mapping joint positions and movements from control devices

is difficult. The utilisation of motion detection from the smartphone in the above

use case can only provide guidance for simple motion. For higher level movements,

Le Kang 10796720 48

CHAPTER 4. WEB MOTION CONTROL FOR PR2

it requires more sophisticated wearable devices to map joints from human to robot

to maximise the benefit of learning from demonstrations.

It should also be noted that in order to run the application on different robot

platforms other than PR2, it will require explicit programming from the source

code. Thus, scripting interface is needed in the application so that the system can

be more configurable and flexible.

4.5 Discussion

Despite its limitations, the application successfully demonstrates a paradigm of

the implementation of modern web application framework into robot software de-

velopment. Web motion control application offers end-users with intuitive control

interface which supports simulation of the robot arms’ kinematics. More impor-

tantly, such an application can be programmed entirely via JavaScript and HTML,

and requires little or even none expertise of ROS programming via either C++

or Python. By leveraging robot web tools, which establishes well-defined abstrac-

tions and interfaces between ROS and the web application, web developers can

efficiently manipulate ROS topics, services and actions as JavaScript objects. As

a result, the reach and accessibility of robot application development is broadened,

which will generate more interest in robotics in a larger population.

In addition, the use case of recording demonstrations through web interface

presents a novel approach for training robot with new skills. In the learning

framework, it utilises the smartphone as a control bridge between the web server

and robots for instant trial feedback and automated data persistence. This gives

novice users a opportunity to get involved in the robot learning process by using

devices that they are familiar with. On the other hand, through web interface, it

connects robot and the smartphone into a small web of things, where both of them

exchange their sensor information. Thus, the robot can be remotely connected and

controlled.

Le Kang 10796720 49

Chapter 5

“Chip” in Shopping Centre

This chapter focuses on the second project in this dissertation, which is the man-

agement and utilisation of “Chip” in a shopping centre. “Chip” is a humanoid

service robot with a touch screen on its chest, and it is capable to move around

and make speech as well as simple gestures. It can be applied to conduct social

activities with human for various goals in a defined environment.

The purpose of the project is to implement the robot to communicate with

customers through promotion activities, such as distributing production discount

code, introducing stores and collecting feedbacks. Meanwhile, a web interface is

developed for the shopkeepers to design and book such promotion activities, view

feedback results as well as watch the activities from live stream.

The chapter is organised as follows: Section 5.1 introduces the overall design of

the system, Section 5.2 presents the complete workflow of the promotion activities,

Section 5.3 focuses on the interactions between the users and Chip, and finally

Section 5.4 discusses the findings and thoughts from implementing the project as

well as identifies the upcoming challenges in the future.

Le Kang 10796720 50

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

5.1 System Design

5.1.1 Overview of the Subsystems

This project has two subsystems: one is the website called Chip for Hire for shop-

keepers to book Chip as their products representative and manage their profiles,

products and surveys content; the other one is a local web application called Chip

on Duty running on Chip’s platform for interacting with customers during the

promotion activity. Both of the two subsystems are based on MEAN stack (see

3.2) as in the project 1.

Since Chip for Hire features content management and secure user authentica-

tion and authorisation, the web server will handle more complicated business logic

and intensive requests than the previous project of PR2. Also, unlike in project

1, the web server is not totally isolated from the robot platform. It builds a indi-

rect relationship with the robot platform by providing web service APIs for Chip

on duty to fetch activity content and save survey results. Besides shopkeeper,

Chip for Hire has another two types of users: administrator and Chip the robot.

Administrator is responsible for maintenance related activities of Chip, releasing

time slots for bookings according to Chip’s availability, and releasing news about

Chip from time to time. Shopkeepers and administrator have direct access to the

website with registered email and corresponding password. However the user in-

terfaces are different, as shown in Figure 5.1. While the robot, Chip, as a special

user does not have user credentials for logging into the system via web interface,

it uses pre-defined token for subscribing the activity content under the permission

from shopkeeper instead.

Le Kang 10796720 51

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

(a) Login interface for shopkeeper (b) Login interface for administrator

(c) Homepage for shopkeeper (d) Homepage for administrator

Figure 5.1: UI of Chip for Hire

Chip on Duty is a self-contained web application, which is hosted by the robot

platform for running promotion activities that booked by a shopkeeper. During

the activity, the application will be in various states which are controlled by ROS

messages. For example, it displays the photos of the products for promotion on the

screen by default. Once a customer is approaching and detected, ROS will send

a message via rosbridge to inform Chip so it will display greeting text. Chip can

also conduct survey for the customers who have tried the product and as a reward,

Chip will send a special offer from the shopkeeper to those who give feedbacks.

All the assets and resources for the application working in the promotion activity

are temporary and will be deleted after activity ends. Therefore, to some extent,

Chip offers the software (Chip on Duty) as a service (SaaS) for shopkeepers. The

integration of web application and ROS enables Chip to interact with people in a

Le Kang 10796720 52

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

more natural way.

5.1.2 API Framework

Figure 5.2: Loopback API explorer

In order to build robust application APIs, the web server adopts Loopback.js 1

as the API framework. Loopback is a highly extensible Node.js framework for

creating dynamic end-to-end REST APIs. It is built on top of Express.js and

supports various data sources including MongoDB. Loopback offers powerful tools

such as visual API explorer (as shown in Figure 5.2) and CLI code generators. The

back-end data are represented by Loopback models (as shown in Figure 5.3), which

come with pre-defined REST APIs with a full set of CRUD operations by default.

1https://loopback.io/

Le Kang 10796720 53

https://loopback.io/

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

The model can be defined via JSON file or command line. Such a programming

via configuration approach make the development process more efficient and less

error-prone.

Figure 5.3: Loopback models structure:

source: http://loopback.io/doc/en/lb2/LoopBack-core-concepts.html

Beyond the pre-defined REST APIs, Loopback allows custom REST endpoints

by adding application logic to models through remote methods. A remote method

is a static method of model which performs operations not provides by standard

model REST APIs. For instance, typical CRUD operation is not suitable for file

uploading, therefore adding a customised method is more appropriate. Appendix

B.7 demonstrates how to use the remote method to handle product photos up-

loaded by shopkeepers. As a result, server can receive product photos via the

customised endpoint /Products/uploadImages. Remote methods can also be used

for handling special data access control rules, providing additional security on top

of default the authentication in Loopback framework. In short, remote methods

extend basic endpoints and offer flexibility to expose additional application data

and logic.

Another reason to use Loopback framework is its ability to manage model

relationships. Chip for Hire involves multiple models, however, NoSQL database

does not resolve relationships explicitly. Therefore, model relations need to be

Le Kang 10796720 54

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

created and handled at the application level. Loopback creates relationships via

model definition, and exposes them as a set of APIs to interact with each of the

model instances, so the related information can be queried and filtered based on

the client’s needs. The JSON objects in Appendix B.8 define the shopkeeper’s

relationship to product, survey and activity.

The relationships configuration indicates that a shopkeeper can have many

products, surveys and promotion activities, while every single of them belongs

to a specific shopkeeper. The foreignKey is left empty so by default it will be

shopKeeperId, which will be a property in the models that declares a belongsTo

relationship. As shown in Figure 5.2, by sending requests to the endpoint /Shop-

keepers/{id}/activites with the shopkeeper’s id, we can find all the promotion

activities that belong to the shopkeeper. This also works in a reverse manner, for

example, the endpoint /Activities/{id}/shopkeeper will return the shopkeeper’s

details if the activity id is provided.

5.1.3 Authentication and Authorisation

Since Chip for Hire will collect some sensitive data such as shopkeeper’s contact

details, product portfolios and customer feedback, it is crucial not to overlook the

critical issue of security. The website implements authentication for both server-

side and client-side. As LoopBack provides built-in token-based authentication,

the server-side will generate an access token once a user is logged in and send the

token to the client-side. The token is required when making subsequent REST

requests from the web interface for the access control system to validate that the

user can invoke methods on a given model.

At the client-side, there are two ways to store the token according to the user’s

preference. If the user trusts the device for automatic login at every visit, the token

will be stored into HTML5 localStorage and valid for authentication until this token

expires on server-side. Otherwise, the token will be stored in sessionStorage, in

which all data is removed when the page session ends.

As for Chip, a special user of the web APIs for acquiring activity content includ-

ing details of shopkeeper, products for promotion and survey questions, a different

authentication strategy is implemented. As Chip makes the REST requests from

Le Kang 10796720 55

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

the web application Chip on Duty which is hosted by itself and used for interact-

ing with customers, it is not safe to keep an access token for a non-private usage.

Therefore, a “double-key” validation rule is applied. As depicted in Figure 5.4,

shopkeeper will input an activation code via the user interface of Chip on Duty

to start the promotion activity, then Chip will send a request to web server with

the activation code and a pre-defined token. The pre-defined token is stored in

a configuration file at the server-side for validate Chip’s identity. Once it is con-

firmed that the request is from Chip, the system will look up the activity within

all scheduled activities on that day by the activation code. The found activity

content will be returned to Chip, otherwise the request will be denied.

Figure 5.4: Authentication strategy for Chip to acquire activity content

Authorisation is also important for data access especially for writing and delet-

ing operation. Loopback provides configurable ACLs (access control lists) which

is defined as a part of model definition. Appendix B.9 demonstrates how to define

the data access of activity model for each role and model method via acls prop-

erty of the model definition. It will firstly deny any access to all REST endpoints

of activity model, and then set up the access control according to the user role.

For the authenticated users, administrator is allowed to read any activity details,

while only the owner (shopkeeper) of the activity can perform any default CRUD

operation or remote methods. Noticeably, the remote methods start, addSuveryRe-

sult, sendOffer and end are open to unauthorised or anonymous users. Those are

designed for Chip to communicate with web server during the activity. As men-

tioned before, the authorisation of data access is implicitly implemented during

the method invocation as a part of “double-key” validation strategy.

Le Kang 10796720 56

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

5.2 The Complete Workflow

Figure 5.5: Workflow of entire system

Figure 5.5 depicts the complete workflow of the entire project. A shopkeeper from

the shopping centre where Chip servers needs to register an account on the Chip

for Hire website with the shop name, email and password in order to hire chip as

sales representative. The shopkeeper can manage the shop profile such as name,

introduction, logo and contact details. Next, the shopkeeper creates a product

portfolio for promotion. Adding product photos is encouraged as Chip can display

them on the screen for better marketing result. To get customer feedback, the

website offers a survey builder where the shopkeeper can design a list of multiple

choice questions. The survey is also editable and sortable so that it is reusable

for different promotion activity. Finally, once the products and surveys are ready,

Le Kang 10796720 57

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

the shopkeeper can check Chip’s availability via the calendar on the homepage,

and reserve a time slot (1 hour per activity). The reservation form will ask the

shopkeeper to add the product from the portfolio and choose a customised survey.

Figure 5.6: Entity relationship diagram of Chip for Hire

In order to attract customers to give feedbacks, the shopkeeper will provide a

special offer as a reward for customers who complete survey. Once the booking

is successful, the shopkeeper will get an activation code via email and SMS (if

mobile number is provided in shop profile) for triggering the promotion activity.

The entity relationship diagram in Figure 5.6 illustrates the models involved in

the workflow.

Before the promotion activity, Chip will start the web application Chip on

Duty and bring activation page for the shopkeeper to input the code. The activity

promotion starts once the activation code is verified by web server and activity

content is loaded by Chip. During the activity, Chip will provide live stream to the

activity owner (shopkeeper), as shown in Figure 5.7 (a). While Chip navigating

around in the shopping centre, it offers product samples to customers and asks

Le Kang 10796720 58

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

them to participate the survey. The customers who give feedback can use Chip’s

touch screen to input their mobile number for special offers. And Chip will make

a request to the web server with the mobile number and survey result from the

customer. Subsequently, the web server of Chip for Hire will process the request

and make a another call to a cloud communication API which sends the special

offer to the customer via SMS. After the activity ends, the shopkeeper can view

the survey result instantly from the web interface, as shown in Figure 5.7 (b).

(a) Live stream during activity (b) Survey result after activity

Figure 5.7: UI from Chip for Hire for shopkeeper to view an acitivty

5.3 Interaction Between Users and Chip

This project emphasises on human-robot interaction. The web-based solution

builds implicit relationships between Chip and users. For Chip and shopkeepers,

an employee-to-employer relationship is formed through the Chip for Hire website.

By using the website, shopkeepers is able to hire Chip for their business without

any technical overhead. All they need to do is managing the shop information

and contents on the website. More importantly, they can choose a suitable time

according to their need.

For Chip and shopping centre visitors, the Chip on Duty web application con-

nects them just like a salesperson to customers. Chip can speak, however, it is

very difficult for Chip to accurately recognise the customers speech because of the

the noisy environment of shopping centre as well as people’s accent. Thus, Chip’s

touch screen (Figure 5.8) plays an important role during the interaction, since it

Le Kang 10796720 59

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

is used to receive customers feedback. The web application is a great way to take

advantages of the touch screen due to its interoperability across platforms and

popularity for various groups of users. As a result, a mutual and unobstructed

communication can be established between Chip and customers.

(a) Display product (b) Conduct survey (c) Finish survey

Figure 5.8: Application UI during a promotion activity

To improve the human-robot social experience, the web server also makes use

of cloud-based communication APIs offered by MailGun2 for email and Twilio3

for SMS. For example, emails and messages written in Chip’s tone notifies the

shopkeeper a activity confirmation with activation code or a cancellation of a

booked activity, as shown in Figure 5.9. Therefore, Chip is able to keep in touch

with offline users.

2http://www.mailgun.com/
3https://www.twilio.com/

Le Kang 10796720 60

http://www.mailgun.com/
https://www.twilio.com/

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

(a) Notification via SMS (b) Notification via email

Figure 5.9: Email and SMS notification from Chip

5.4 Discussion and Future Work

The focus of the project is to reduce the social barriers such as poor accessibility

and languages issue between Chip and ordinary people, so that Chip can conduct

promotion activities and create value for shopkeepers. This research firstly identi-

fies the web as Chip’s prior social means. The ubiquitousness of web helps people

establish social network efficiently. Therefore, Chip can take this advantage to be

more accessible by its users. That is the reason of building Chip for Hire web-

site. Thus, Chip can be employed as a human by shopkeepers via web interface.

To interact with customers, this research fully leverages the touch screen built on

Chip, creating user-friendly web interface Chip on Duty to demonstrate products

and gather feedbacks. More importantly, the two web applications can communi-

Le Kang 10796720 61

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

cate via RESTful web services with security protection for data. This builds an

implicit relationship between the shopkeepers and customers through the service

robot, and creates novel experience for marketing and shopping. Also, by invoking

third part web APIs on cloud communication platforms, Chip is able to keep in

touch with shopkeepers offline via email or SMS. To summarise, web technologies

expand the social functions of service robots, which are more familiar to ordinary

people in their daily life.

The project has been demonstrated on the presentation day of Robotics Pro-

gram held by Australian Technology Network of Universities (ATN) and received

positive feedbacks such as its ease of use and readiness for commercial production.

However, there are upcoming challenges in order to further improve the solution.

First, the system needs to be integrated with the navigation, localisation and

face recognition modules running on Chip. Currently, the web application is driven

by manually inputting ROS messages through console. Chip is expected to be able

to localise itself and navigate autonomously within the shopping centre. It is also

important for Chip to be aware of approaching customers so it can engage in the

communication with them naturally.

Second, the solution needs a real-world trial in a shopping centre to see how

people are coping with the service robot. Will the shopkeepers prefer to hire

Chip rather than a human? Will the customers be interested to interact with

Chip? Will Chip’s survey results be significantly different from a human delivered

survey? Those questions require further assessments before a production level of

implementation.

Last but not the least, the privacy and security issue needs to be addressed

properly. Since Chip will collect large amount of data and some of them are

sensitive such as shopkeepers’ business profile and customers’ contact details, to

what extent the stakeholders trust Chip is questionable. Also, it is necessary to

examine how customers think of the live stream from Chip to the shopkeeper.

Although it is a nice feature for shopkeeper to watch the status of activity and

observe customers’ reaction to the product, it also exposes customers under the

camera which is a serious privacy concern. Thus, the robot’s trustworthiness needs

to be tested and at the same time, the protection of privacy for all the stakeholders

Le Kang 10796720 62

CHAPTER 5. “CHIP” IN SHOPPING CENTRE

can not be ignored.

Le Kang 10796720 63

Chapter 6

Conclusion and Future

Perspectives

Accessibility and usability are critical to the success of robot software development

and social robotics. At present, novice users can hardly get involved in the robot

software design and implementation process due to their lack of knowledge of ROS.

The complexity of the robot middleware system needs to be further abstracted so

that researchers and developers for other fields and disciplines can participate in

robotics study. On the other hand, web development emphasises well established

and defined layers of abstractions from low-level system IO to high-level application

interfaces. As a result, developers with various levels of expertise are able to

contribute to the web development. Therefore, robotics study can take advantages

of those features from web technologies to draw more attentions.

The first project in this research attempts to build an abstraction boundary

between web interface and robot middleware system to provide robot visualisation

and control tools for end-users who are not roboticist themselves. With the robot

web tools, robot development is no longer restricted within certain platforms and

programming languages. More importantly, the development of effective web-

based robot application will facilitate the robotics community to grow beyond the

specialised researchers.

The web motion control application for PR2 demonstrates how to use pure

JavaScript for manipulating robots so that web developers can get involved with

Le Kang 10796720 64

CHAPTER 6. CONCLUSION AND FUTURE PERSPECTIVES

robot application development. In addition, it integrates the robot web tools into

modern web application framework, the MEAN stack, to provide users friendly

and intuitive interface as well as programmability for performing experiments.

The use case describes a novel approach for collecting demonstration data during

robot learning process via a smartphone. As the MEAN stack features scalable

architecture and real-time communication, developers are able to add various smart

devices for human-robot interaction. This offers the opportunity to put robots into

web of things so that they can collect information from different sources rather

than relying on their own sensors.

Another benefit brought by web technologies to robotics study is the improved

interactivity between robot and human. Web 2.0 broadens the communication

tools for people to share information and the ubiquitousness of web applications

nowadays connects people more closely. This create opportunities for social robots

to engage more into daily-life environment as they can equip and leverage web-

enabled devices. Chip, the REEM robot used in the second research project, has a

touch screen on its chest, providing a great mean for social interaction with people.

By implementing a distributed web system, Chip is able to create commercial

value and establish relationships with its stakeholders in shopping centre. The

communication between Chip and stakeholders through web interface overcomes

some social barriers that may exist if a promotion event is held by humans, such

as the social stress when conducting a human-to-human survey.

Web also enriches the social activities for robots as it provides a great range

of resources for robots to leverage. The interaction between robots and humans

should not rely on speeches and gestures. Social robots are expected to be able

to utilise modern communication methods such as email, SMS and online social

network so they can maintain relationship with humans while offline. On the other

hand, as robot sensors still cannot capture subtle social cues in the way humans

do, web applications help humans express their message or intention explicitly

through HTML elements such as buttons and text boxes. As a result, it reduces

the misunderstandings between humans and robots, thus improve the efficiency of

human-robot interaction and experience.

The integration of web technologies and robotics research will be increasing

important. The future web and robotics are evolving towards higher levels of in-

Le Kang 10796720 65

CHAPTER 6. CONCLUSION AND FUTURE PERSPECTIVES

telligence. Robots will work with humans in a smart environment where consists

of hundreds of heterogeneous devices. They will be required to integrate those

devices to achieve more complicated tasks. In such a smart environment, web is a

common communication “language” for exchanging information, providing knowl-

edge to robots from various resources. In addition, as Web 3.0 will be semantic and

machine-centric, web-enabled and cloud-based robots are expected to understand

and discovery information on the web autonomously. Thus, robots are no longer

working as stand-alone, instead, they are becoming a part of the Web of Things,

serving and consuming web services at the same time. As a result, robot as a

service will become more pervasive with sophisticated web-based user interface for

remote tele-operating, resource managing and knowledge sharing.

Le Kang 10796720 66

Bibliography

[1] B. Alexander, K. Hsiao, C. Jenkins, B. Suay, and R. Toris. Robot web tools.

IEEE Robotics and Automation Magazine, 19(4):20–23, 2012.

[2] M. Beetz, M. Tenorth, and J. Winkler. OPEN-EASE ? A Knowledge Pro-

cessing Service for Robots and Robotics/AI Researchers. In 2015 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 1984–1990.

IEEE, May 2015.

[3] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, and A. Secret.

The World-Wide Web. Communications of the ACM, 37(8):76–82, Aug 1994.

[4] G. A. Casañ, E. Cervera, A. A. Moughlbay, J. Alemany, and P. Martinet.

ROS-based online robot programming for remote education and training. In

Proceedings - IEEE International Conference on Robotics and Automation,

volume 2015-June, pages 6101–6106. IEEE, May 2015.

[5] I. K. Chaniotis, K.-I. D. Kyriakou, and N. D. Tselikas. Is Node.js a viable op-

tion for building modern web applications? A performance evaluation study.

Computing, 97(10):1024–1044, Oct 2014.

[6] W. Chansuwath and T. Senivongse. A model-driven development of web

applications using AngularJS framework. In 2016 IEEE/ACIS 15th Interna-

tional Conference on Computer and Information Science (ICIS), pages 1–6.

IEEE, Jun 2016.

[7] S. Cherrier and Y. Ghamri-Doudane. The ?Object-as-a-Service? paradigm.

2014 Global Information, 2014.

Le Kang 10796720 67

BIBLIOGRAPHY

[8] B. Christophe, M. Boussard, M. Lu, A. Pastor, and V. Toubiana. The web

of things vision: Things as a service and interaction patterns. Bell Labs

Technical Journal, 16(1):55–62, 2011.

[9] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins. Rosbridge: ROS

for non-ROS users. In Proceedings of the 15th International Symposium on

Robotics Research, 2011.

[10] D. Crockford. JavaScript: The World’s Most Misunderstood Programming

Language, 2001.

[11] D. DiNucci. Fragmented future. Print, 53(4):32, 1999.

[12] J. Dirksen. Learning Three.js : The JavaScript 3D Library for WebGL. 2013.

[13] V. Djalic, P. Maric, D. Kosic, D. Samuelsen, B. Thyberg, and O. Graven.

Remote laboratory for robotics and automation as a tool for remote access

to learning content. In 2012 15th International Conference on Interactive

Collaborative Learning, ICL 2012, pages 1–3. IEEE, Sep 2012.

[14] M. C. Domenech, L. P. Rauta, M. D. Lopes, P. H. Silva, R. C. Silva, B. W.

Mezger, and M. S. Wangham. Providing a Smart Industrial Environment

with the Web of Things and Cloud Computing. 2016 IEEE International

Conference on Services Computing (SCC), pages 641–648, Jun 2016.

[15] A. DuVander. 9,000 APIs: Mobile Gets Serious, 2013.

[16] G. Fink and I. Flatow. Modular JavaScript Development. In Pro Single Page

Application Development, pages 35–48. Apress, Berkeley, CA, 2014.

[17] A. German, S. Salmeron, W. Ha, and B. Henderson. MEAN Web Develop-

ment. In Proceedings of the 17th Annual Conference on Information Tech-

nology Education - SIGITE ’16, pages 128–129, New York, New York, USA,

2016. ACM Press.

[18] Google. Material design guidelines, 2016.

[19] D. Gossow, A. Leeper, D. Hershberger, and M. Ciocarlie. ROS topics: Inter-

active markers: 3-D user interfaces for ROS applications, Dec 2011.

Le Kang 10796720 68

BIBLIOGRAPHY

[20] D. Guinard and V. Trifa. Towards the Web of Things : Web Mashups for Em-

bedded Devices. Workshop on Mashups, Enterprise Mashups and Lightweight

Composition on the Web (MEM 2009), pages 1–8, 2009.

[21] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture for the

web of things. In 2010 Internet of Things, IoT 2010, pages 1–8. IEEE, Nov

2010.

[22] Guinard Dominique. Web of Things vs Internet of Things, 2016.

[23] L. Kunze, T. Roehm, and M. Beetz. Towards semantic robot description

languages. In Proceedings - IEEE International Conference on Robotics and

Automation, pages 5589–5595. IEEE, May 2011.

[24] K.-I. D. Kyriakou, I. K. Chaniotis, and N. D. Tselikas. The GPM meta-

transcompiler: Harmonizing JavaScript-oriented Web development with the

upcoming ECMAScript 6 “Harmony” specification. In 2015 12th An-

nual IEEE Consumer Communications and Networking Conference (CCNC),

pages 176–181. IEEE, Jan 2015.

[25] D. Lee, C. Ott, Y. Nakamura, and G. Hirzinger. Physical human robot inter-

action in imitation learning. 2011 IEEE International Conference on Robotics

and Automation, pages 3439–3440, May 2011.

[26] J. Lee. Web Applications for Robots using rosbridge. Brown University, 2012.

[27] K. Lei, Y. Ma, and Z. Tan. Performance comparison and evaluation of web

development technologies in PHP, Python and Node.js. In Proceedings - 17th

IEEE International Conference on Computational Science and Engineering,

CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous

Computing and Communications, IUCC 2014, 13th International Symposium

on Pervasive Systems,, pages 661–668. IEEE, Dec 2015.

[28] K.-J. Lin. Building Web 2.0. Computer, 40(5):101–102, May 2007.

[29] S. Maitra and A. C. Mondal. Intelligence in web technology. pages 739–757.

IGI Global, 2012.

Le Kang 10796720 69

BIBLIOGRAPHY

[30] S. Mayer. Web-based service brokerage for robotic devices. In Proceedings of

the 2012 ACM Conference on Ubiquitous Computing - UbiComp ’12, pages

863–865, 2012.

[31] A. Mesbah and A. Van Deursen. Migrating multi-page web applications to

single-page AJAX interfaces. In Proceedings of the European Conference on

Software Maintenance and Reengineering, CSMR, pages 181–190. IEEE, 2007.

[32] T. Mikkonen and A. Taivalsaari. Using Javascript as a real programming

language. Network, page 17, 2007.

[33] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel. Rapyuta: A

Cloud Robotics Platform. IEEE Transactions on Automation Science and

Engineering, 12(2):481–493, Apr 2015.

[34] S. Murugesan. Understanding Web 2.0. IT Professional, 9(4):34–41, Jul 2007.

[35] S. Murugesan. Web X.0: A Road Map. In Handbook of Research on Web

2.0, 3.0, and X.0: Technologies, Business, and Social Applications, volume 1,

pages 1–11. IGI Global, 2010.

[36] P. Orduña, L. Rodriguez-Gil, D. López-De-Ipiña, and J. Garćıa-Zubia. Shar-

ing the remote laboratories among different institutions: A practical case. In

2012 9th International Conference on Remote Engineering and Virtual In-

strumentation, REV 2012, pages 1–4. IEEE, Jul 2012.

[37] T. O’Reilly. What is Web 2.0?, 2005.

[38] A. Ortiz. Programming Web Services on the Cloud with Node.js. In Proceed-

ings of the 47th ACM Technical Symposium on Computing Science Education,

page 719, New York, New York, USA, 2016. ACM Press.

[39] S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. Du Hadway, and O. C. Jenk-

ins. Robots as web services: Reproducible experimentation and application

development using rosjs. In Proceedings - IEEE International Conference on

Robotics and Automation, pages 6078–6083. IEEE, May 2011.

Le Kang 10796720 70

BIBLIOGRAPHY

[40] S. Osentoski, B. Pitzer, C. Crick, G. Jay, S. Dong, D. Grollman, H. B. Suay,

and O. C. Jenkins. Remote Robotic Laboratories for Learning from Demon-

stration: Enabling user interaction and shared experimentation, Nov 2012.

[41] L. D. Paulson. Developers shift to dynamic programming languages. Com-

puter, 40(2):12–15, Feb 2007.

[42] L. Peternel and J. Babic. Humanoid robot posture-control learning in real-

time based on human sensorimotor learning ability. In Proceedings - IEEE In-

ternational Conference on Robotics and Automation, pages 5329–5334. IEEE,

May 2013.

[43] B. Pitzer, S. Osentoski, G. Jay, C. Crick, and O. C. Jenkins. PR2 Remote Lab:

An environment for remote development and experimentation. In Proceedings

- IEEE International Conference on Robotics and Automation, pages 3200–

3205. IEEE, May 2012.

[44] A. J. Poulter, S. J. Johnston, and S. J. Cox. Using the MEAN stack to

implement a RESTful service for an Internet of Things application. In IEEE

World Forum on Internet of Things, WF-IoT 2015 - Proceedings, pages 280–

285. IEEE, Dec 2016.

[45] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, and A. Ng. ROS: an open-source Robot Operating System.

ICRA, 3:5, 2009.

[46] M. Quigley, B. Gerkey, and W. D. Smart. Programming robots with ROS.

[47] E. Ratner, B. Cohen, M. Phillips, and M. Likhachev. A web-based infras-

tructure for recording user demonstrations of mobile manipulation tasks.

Robotics and Automation (ICRA), 2015 IEEE International Conference on,

pages 5523–5530, May 2015.

[48] L. Richardson, M. Amundsen, and S. Ruby. RESTful Web APIs. 2013.

[49] I. Salvadori and F. Siqueira. A framework for semantic description of RESTful

web APIs. In Proceedings - 2014 IEEE International Conference on Web

Services, ICWS 2014, pages 630–637. IEEE, Jun 2014.

Le Kang 10796720 71

BIBLIOGRAPHY

[50] I. Santana, M. Ferre, E. Izaguirre, R. Aracil, and L. Hernandez. Remote

laboratories for education and research purposes in automatic control systems.

IEEE Transactions on Industrial Informatics, 9(1):547–556, Feb 2013.

[51] Stack Overflow. Stack Overflow Developer Survey 2016 Results, 2016.

[52] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen. The death of

binary software: End user software moves to the web. In Proceedings - 9th

International Conference on Creating, Connecting and Collaborating through

Computing, C5 2011, pages 17–23. IEEE, Jan 2011.

[53] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar. From the

Service-Oriented Architecture to the Web API Economy. IEEE Internet Com-

puting, 20(4):64–68, Jul 2016.

[54] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to build high-performance

network programs. IEEE Internet Computing, 14(6):80–83, Nov 2010.

[55] R. Toris. Bringing Human-Robot Interaction Studies Online via the Robot

Management System. PhD thesis, 2013.

[56] R. Toris and S. Chernova. Robotsfor.Me and Robots for You. 2013.

[57] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski, M. Wills,

and S. Chernova. Robot Web Tools: Efficient messaging for cloud robotics.

In IEEE International Conference on Intelligent Robots and Systems, volume

2015-Decem, pages 4530–4537, 2015.

[58] R. Waibel, M. and Beetz, M. and Civera, J. and D’Andrea, R. and Elfring,

J. and Galvez-Lopez, D. and Haussermann, K. and Janssen, R. and Montiel,

J.M.M. and Perzylo, A. and Schiessle, B. and Tenorth, M. and Zweigle, O.

and van de Molengraft. RoboEarth-A World Wide Web for Robots. Robotics

Automation Magazine, IEEE, 18(June):69–82, Jun 2011.

[59] D. Zeng, S. Guo, and Z. Cheng. The Web of Things: A Survey. Journal of

Communications, 6:424–438, 2011.

Le Kang 10796720 72

Appendix A

Development Environment Setup

Following commands install client-side package manager bower, task runner gulp

globally and then build client-side framework Angular and server-side framework

Express.

1 sudo npm install bower -g

2 sudo npm install gulp -g

3 npm install express

4 bower install angular

Following are the commands for setting up ROS in virtual machine with pack-

ages that supports robot web tools.

1 wget https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -O - | sudo apt-key add -

2 sudo apt-get update

3 sudo rosdep init

4 rosdep update

5 echo "source /opt/ros/hydro/setup.bash" >> ~/.bashrc

6 source ~/.bashrc

7 sudo apt-get install ros-hydro-desktop-full

8 sudo apt-get install ros-hydro-rosbridge-suite

9 sudo apt-get install ros-hydro-web-video-server

10 sudo apt-get install ros-hydro-tf2-web-republisher

Le Kang 10796720 73

Appendix B

List of Source Codes

B.1 Client Side Routers Configuration in Web

Motion Control Application

1 (function() {

2 'use strict';

3

4 angular

5 .module('pr2WebMotionControl')

6 .config(routerConfig);

7

8 /** @ngInject **/

9 function routerConfig($windowProvider, $stateProvider, $urlRouterProvider) {

10 var $window = $windowProvider.$get();

11 var isAndroid = $window.navigator.userAgent.match(/Android/i);

12 var isiPhone = $window.navigator.userAgent.match(/iPhone/i);

13

14 if (isAndroid || isiPhone) {

15 $stateProvider

16 .state('controller', {

17 url: '',

18 templateUrl: 'app/views/controller.html',

19 controller: 'motionController',

20 controllerAs: 'control'

21 });

22 } else {

23 $stateProvider

24 .state('monitor', {

25 abstract: true,

26 templateUrl: 'app/views/monitor.html',

Le Kang 10796720 74

APPENDIX B. LIST OF SOURCE CODES

27 controller: 'monitorController',

28 controllerAs: 'monitor'

29 })

30 .state('monitor.views', {

31 url: '',

32 views: {

33 "users": {

34 templateUrl: 'app/views/users.html',

35 controller: 'usersController',

36 controllerAs: 'users'

37 },

38 "robot": {

39 templateUrl: 'app/views/robot.html',

40 controller: 'robotController',

41 controllerAs: 'robot'

42 }

43 }

44 });

45 }

46

47 $urlRouterProvider.otherwise('/');

48 }

49 })();

Le Kang 10796720 75

APPENDIX B. LIST OF SOURCE CODES

B.2 Script for controlling PR2 arms as a whole

1 #!/usr/bin/env python

2

3 import rospy

4 from std_msgs.msg import String

5 from pymongo import MongoClient

6 from std_msgs.msg import Float64

7

8

9 class ArmsController:

10 def __init__(self):

11 self.node_name = 'pr2_arms_controller'

12 self.motions = {}

13 self.get_motions()

14 self.jointPublishers = {

15 'r_shoulder_pan_joint': rospy.Publisher('/r_joint/r_shoulder_pan_joint/command',

Float64, queue_size=1),↪→

16 'r_shoulder_lift_joint': rospy.Publisher('/r_joint/r_shoulder_lift_joint/command',

Float64, queue_size=1),↪→

17 'r_upper_arm_roll_joint': rospy.Publisher('/r_joint/r_upper_arm_roll_joint/command',

Float64, queue_size=1),↪→

18 'r_elbow_flex_joint': rospy.Publisher('/r_joint/r_elbow_flex_joint/command',

Float64, queue_size=1),↪→

19 'r_forearm_roll_joint': rospy.Publisher('/r_joint/r_forearm_roll_joint/command',

Float64, queue_size=1),↪→

20 'r_wrist_flex_joint': rospy.Publisher('/r_joint/r_wrist_flex_joint/command',

Float64, queue_size=1),↪→

21 'r_wrist_roll_joint': rospy.Publisher('/r_joint/r_wrist_roll_joint/command',

Float64, queue_size=1),↪→

22 'l_shoulder_pan_joint': rospy.Publisher('/l_joint/l_shoulder_pan_joint/command',

Float64, queue_size=1),↪→

23 'l_shoulder_lift_joint': rospy.Publisher('/l_joint/l_shoulder_lift_joint/command',

Float64, queue_size=1),↪→

24 'l_upper_arm_roll_joint': rospy.Publisher('/l_joint/l_upper_arm_roll_joint/command',

Float64, queue_size=1),↪→

25 'l_elbow_flex_joint': rospy.Publisher('/l_joint/l_elbow_flex_joint/command',

Float64, queue_size=1),↪→

26 'l_forearm_roll_joint': rospy.Publisher('/l_joint/l_forearm_roll_joint/command',

Float64, queue_size=1),↪→

27 'l_wrist_flex_joint': rospy.Publisher('/l_joint/l_wrist_flex_joint/command',

Float64, queue_size=1),↪→

28 'l_wrist_roll_joint': rospy.Publisher('/l_joint/l_wrist_roll_joint/command',

Float64, queue_size=1)↪→

29 }

30 rospy.Subscriber('arms_motion_control', String, self.do_motion, queue_size=1)

31 rospy.Subscriber('update_motions', String, self.get_motions, queue_size=1)

32 rospy.init_node(self.node_name)

33

34 def get_motions(self, msg=None):

Le Kang 10796720 76

APPENDIX B. LIST OF SOURCE CODES

35 if msg is not None and msg.data == 'update':

36 self.motions = {}

37

38 client = MongoClient('mongodb://<dbuser>:<dbpassword>@ds031607.mlab.com:31607/pr2')

39 db = client.get_default_database()

40 for motion in db.motions.find():

41 self.motions[motion['name']] = motion

42

43 def do_motion(self, msg):

44 if msg.data in self.motions:

45 motion = self.motions[msg.data]

46 for joint_name, joint_publisher in self.jointPublishers.iteritems():

47 joint_publisher.publish(motion[joint_name.encode()])

48

49 def main():

50 ArmsController()

51 rospy.spin()

52

53 if __name__ == '__main__':

54 main()

Le Kang 10796720 77

APPENDIX B. LIST OF SOURCE CODES

B.3 Web Server Script in Web Motion Control

Application

1 var path = require('path');

2 var express = require('express');

3 var app = express();

4 var server = require('http').Server(app);

5 var bodyParser = require('body-parser');

6 var mongoose = require('mongoose');

7 var Schema = mongoose.Schema;

8 var motionSchema = new Schema({

9 name: String,

10 r_shoulder_pan_joint: Number,

11 r_shoulder_lift_joint: Number,

12 r_upper_arm_roll_joint: Number,

13 r_elbow_flex_joint: Number,

14 r_forearm_roll_joint: Number,

15 r_wrist_flex_joint: Number,

16 r_wrist_roll_joint: Number,

17 l_shoulder_pan_joint: Number,

18 l_shoulder_lift_joint: Number,

19 l_upper_arm_roll_joint: Number,

20 l_elbow_flex_joint: Number,

21 l_forearm_roll_joint: Number,

22 l_wrist_flex_joint: Number,

23 l_wrist_roll_joint: Number

24 });

25 var motion = mongoose.model('motion', motionSchema);

26 mongoose.connect('mongodb://<dbuser>:<dbpassword>@ds031607.mlab.com:31607/pr2');

27 app.set('port', (process.env.PORT || 5000));

28 server.listen(app.get('port'), function() {

29 console.log('Application is running on port', app.get('port'));

30 });

31 app.use(express.static(path.resolve('client')));

32 app.use(bodyParser.urlencoded({'extended':'true'}));

33 app.use(bodyParser.json());

34 app.use(bodyParser.json({ type: 'application/vnd.api+json' }));

35 app.get('/', function(req, res) {

36 res.sendFile(path.resolve('client/index.html'));

37 });

38 app.post('/api/motion', function(req, res) {

39 motion.findOneAndUpdate({ name: req.body.name }, req.body, { upsert: true }, function(err) {

40 if (err) {

41 res.send(err);

42 }

43 res.send('Motion (' + req.body.name + ') configured');

44 });

45 });

Le Kang 10796720 78

APPENDIX B. LIST OF SOURCE CODES

B.4 Visualisation of URDF Using ros3djs

1 var viewer = new ROS3D.Viewer({

2 divID: 'urdf',

3 width: 800,

4 height: 600,

5 antialias: true

6 });

7 viewer.addObject(new ROS3D.Grid());

8

9 var tfClient = new ROSLIB.TFClient({

10 ros: vm.ros,

11 angularThres: 0.01,

12 transThres: 0.01,

13 rate: 10.0

14 });

15

16 var urdf = new ROS3D.UrdfClient({

17 ros: ros,

18 tfClient: tfClient,

19 path: 'assets/',

20 rootObject: viewer.scene,

21 loader: ROS3D.COLLADA_LOADER

22 });

Le Kang 10796720 79

APPENDIX B. LIST OF SOURCE CODES

B.5 Initialisation of Joint Control Panel

1 // 'vm' is the convention of naming ViewModel in Angular.js

2 vm.armJoints = ['r_shoulder_pan_joint', 'r_shoulder_lift_joint', 'r_upper_arm_roll_joint',

'r_elbow_flex_joint', 'r_forearm_roll_joint', 'r_wrist_flex_joint', 'r_wrist_roll_joint',

'l_shoulder_pan_joint', 'l_shoulder_lift_joint', 'l_upper_arm_roll_joint',

'l_elbow_flex_joint', 'l_forearm_roll_joint', 'l_wrist_flex_joint', 'l_wrist_roll_joint'];

↪→

↪→

↪→

3 vm.bodyJoints = ['head_pan_joint', 'head_tilt_joint', 'torso_lift_joint'];

4 vm.jointLimits = {};

5 vm.armJointStates = {};

6 vm.bodyJointStates = {};

7

8 function getJointParameters() {

9 var param = new ROSLIB.Param({

10 ros: vm.ros,

11 name: 'robot_description'

12 });

13 param.get(function (value) {

14 var parser = new DOMParser();

15 var xmlDoc = parser.parseFromString(value, 'text/xml');

16 var robotDescriptionXml = xmlDoc.evaluate('//robot', xmlDoc, null,

XPathResult.FIRST_ORDERED_NODE_TYPE, null).singleNodeValue;↪→

17 for (var nodes = robotDescriptionXml.childNodes, i = 0; i < nodes.length; i++) {

18 var node = nodes[i];

19 if (node.tagName == 'joint' && node.getAttribute('type') != 'fixed') {

20 var limit, minValue, maxValue;

21 if (node.getAttribute('type') == 'continuous') {

22 minValue = -Math.PI;

23 maxValue = Math.PI;

24 } else {

25 if (node.getElementsByTagName('safety_controller')[0]) {

26 limit = node.getElementsByTagName('safety_controller')[0];

27 minValue = parseFloat(limit.getAttribute('soft_lower_limit'));

28 maxValue = parseFloat(limit.getAttribute('soft_upper_limit'));

29 } else {

30 limit = node.getElementsByTagName('limit')[0];

31 minValue = parseFloat(limit.getAttribute('lower'));

32 maxValue = parseFloat(limit.getAttribute('upper'));

33 }

34 }

35 vm.jointLimits[node.getAttribute('name')] = {

36 minValue: minValue,

37 maxValue: maxValue

38 };

39 }

40 }

41 getJointStates();

42 $scope.$apply();

43 });

44 }

Le Kang 10796720 80

APPENDIX B. LIST OF SOURCE CODES

45 function getJointStates() {

46 var subscriber = new ROSLIB.Topic({

47 ros: vm.ros,

48 name: '/joint_states',

49 messageType: 'sensor_msgs/JointState'

50 });

51 subscriber.subscribe(function(message) {

52 var jointStates = _.zipObject(message.name, message.position);

53 _.forEach(vm.armJoints, function(name) {

54 vm.armJointStates[name] = parseFloat(parseFloat(jointStates[name]).toFixed(3));

55 });

56 _.forEach(vm.bodyJoints, function(name) {

57 vm.bodyJointStates[name] = parseFloat(parseFloat(jointStates[name]).toFixed(3));

58 });

59 $scope.$apply();

60 subscriber.unsubscribe();

61 });

62 }

63

64 getJointParameters();

Le Kang 10796720 81

APPENDIX B. LIST OF SOURCE CODES

B.6 Script for Ball Detecting and Tracing Using

OpenCV

1 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

2 lower_red = np.array([156, 43, 46])

3 upper_red = np.array([180, 255, 255])

4 mask = cv2.inRange(hsv, lower_red, upper_red)

5 mask = cv2.erode(mask, None, iterations=2)

6 mask = cv2.dilate(mask, None, iterations=2)

7 contours, hierarchy = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

8 if len(contours) > 0:

9 c = max(contours, key=cv2.contourArea)

10 (x, y), radius = cv2.minEnclosingCircle(c)

11 if radius > 10:

12 self.ball_center = (x, y)

13 cv2.circle(frame, (int(x), int(y)), int(radius), (255, 0, 0), 3)

14 cv2.rectangle(frame, (int(x) - 5, int(y) - 5), (int(x) + 5, int(y) + 5), (255, 0, 0),

-1)↪→

Le Kang 10796720 82

APPENDIX B. LIST OF SOURCE CODES

B.7 Example of Using Remote Method in Loop-

back

1 Product.uploadImages = function(ctx, id, cb) {

2 ctx.req.params.container = id;

3 var Container = Product.app.models.Container;

4 Container.upload(ctx.req, ctx.result, function(err, fileObj) {

5 if (err) return cb(err);

6 var newImages = [];

7 _.forEach(fileObj.files, function(file) {

8 newImages.push(file[0].name);

9 });

10 Product.findById(id, function(err, product) {

11 if (err) return cb(err);

12 var images = product.images || [];

13 images = _.union(images, newImages);

14 product.updateAttribute('images', images, function(err) {

15 if (err) return cb(err);

16 cb(null, images);

17 })

18 });

19 });

20 };

21

22 Product.remoteMethod(

23 'uploadImages',

24 {

25 description: 'Upload product images',

26 accepts: [

27 { arg: 'ctx', type: 'object', http: { source: 'context' } },

28 { arg: 'id', type: 'string' }

29],

30 returns: { arg: 'images', type: '[string]' },

31 http: { verb: 'post' }

32 }

33);

Le Kang 10796720 83

APPENDIX B. LIST OF SOURCE CODES

B.8 Example of Defining Model Relationships in

Loopback

1 {

2 "name": "Shopkeeper",

3 ...

4 "relations": {

5 "products": {

6 "type": "hasMany",

7 "model": "Product",

8 "foreignKey": ""

9 },

10 "surveys": {

11 "type": "hasMany",

12 "model": "Survey",

13 "foreignKey": ""

14 },

15 "activities": {

16 "type": "hasMany",

17 "model": "Activity",

18 "foreignKey": ""

19 }

20 }

21 ...

22 }

23 {

24 "name": "Product",

25 ...

26 "relations": {

27 "shopkeeper": {

28 "type": "belongsTo",

29 "model": "Shopkeeper",

30 "foreignKey": ""

31 }

32 }

33 ...

34 }

35 {

36 "name": "Survey",

37 ...

38 "relations": {

39 "shopkeeper": {

40 "type": "belongsTo",

41 "model": "Shopkeeper",

42 "foreignKey": ""

43 }

44 }

45 ...

46 }

Le Kang 10796720 84

APPENDIX B. LIST OF SOURCE CODES

47 {

48 "name": "Activity",

49 ...

50 "relations": {

51 "shopkeeper": {

52 "type": "belongsTo",

53 "model": "Shopkeeper",

54 "foreignKey": ""

55 }

56 }

57 ...

58 }

Le Kang 10796720 85

APPENDIX B. LIST OF SOURCE CODES

B.9 Example of Controlling the Data Access in

Loopback

1 {

2 "name": "Activity",

3 ...

4 "acls": [

5 {

6 "accessType": "*",

7 "principalType": "ROLE",

8 "principalId": "$everyone",

9 "permission": "DENY"

10 },

11 {

12 "accessType": "READ",

13 "principalType": "ROLE",

14 "principalId": "Admin",

15 "permission": "ALLOW"

16 },

17 {

18 "accessType": "*",

19 "principalType": "ROLE",

20 "principalId": "$owner",

21 "permission": "ALLOW"

22 },

23 {

24 "accessType": "EXECUTE",

25 "principalType": "ROLE",

26 "principalId": "$everyone",

27 "permission": "ALLOW",

28 "property": "start"

29 },

30 {

31 "accessType": "EXECUTE",

32 "principalType": "ROLE",

33 "principalId": "$everyone",

34 "permission": "ALLOW",

35 "property": "addSurveyResult"

36 },

37 {

38 "accessType": "EXECUTE",

39 "principalType": "ROLE",

40 "principalId": "$everyone",

41 "permission": "ALLOW",

42 "property": "sendOffer"

43 },

44 }

Le Kang 10796720 86

APPENDIX B. LIST OF SOURCE CODES

44 {

45 "accessType": "EXECUTE",

46 "principalType": "ROLE",

47 "principalId": "$everyone",

48 "permission": "ALLOW",

49 "property": "end"

50 }

51]

52 ...

53 }

Le Kang 10796720 87

	Motivation and Introduction
	Literature Review
	Web 2.0 and Beyond: Technologies, Trend and Impact
	Overview
	The Cutting-edge Web Development Technologies and Trends
	The Rise of JavaScript
	Representational State Transfer (REST) Web APIs
	Web of Things (WoT)

	The Future of Web and Its Possible Impacts on Robotics

	Robot Web Tools: State of the Art
	Rationale
	Under the Hood
	Tools and Applications

	Current Applications of Web Technologies for Robotics
	Robotics Education and Training
	Programming by Demonstrations
	Knowledge-based Cloud Robotics

	Conclusion

	Research Design
	Identify Research Questions
	Tools Analysis
	Development Environment and Tools Setup
	Research Projects Overview

	Web Motion Control for PR2
	Software Infrastructure
	Structure: client-side
	Structure: server-side

	User Interface
	3D Robot Model Visualisation
	Joint Control Panel
	Robot Vision Live Stream

	Use Case: Recording Demonstrations for PR2 Learning Ball Catching
	Design
	Procedure

	Known Limitations
	Discussion

	``Chip'' in Shopping Centre
	System Design
	Overview of the Subsystems
	API Framework
	Authentication and Authorisation

	The Complete Workflow
	Interaction Between Users and Chip
	Discussion and Future Work

	Conclusion and Future Perspectives
	Development Environment Setup
	List of Source Codes
	Client Side Routers Configuration in Web Motion Control Application
	Script for controlling PR2 arms as a whole
	Web Server Script in Web Motion Control Application
	Visualisation of URDF Using ros3djs
	Initialisation of Joint Control Panel
	Script for Ball Detecting and Tracing Using OpenCV
	Example of Using Remote Method in Loopback
	Example of Defining Model Relationships in Loopback
	Example of Controlling the Data Access in Loopback

